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Abstract

Metabolomics is the large scale study of small organic molecules (metabolites)
within an organism, tissue, or cell. This technique and its application to systemic
diseases is revealing of potential diagnoses and treatments offering a significant ad-
vancement to the medical and clinical communities. However, statistical methods for
metabolomics are often misunderstood due to low sample sizes and large feature sets
and interpretability of experimental results is difficult without established knowledge
of biochemistry and the disease domain. This paper aims to elaborate the statistical
techniques utilized in metabolomics as well as apply them to a widespread systemic
disease, acute kidney injury (AKI), to better understand the disease state. AKI is
associated with widespread effects on distant organs, including the heart, lung, and
liver, and is incident in upwards of 20% of hospitalized patients and 70% of intensive
care unit patients. In this study, metabolomics analysis was performed on five sepa-
rate organ tissues to examine the effect of AKI on distant organs in mice, under the
hypothesis that AKI would have deleterious effects on distant organs, specifically the
heart, lung, and liver and cause shifts from oxidative phosphorylation generation of
ATP to alternative energy metabolism and oxidative stress. Metabolomics statistical
techniques were utilized to identify metabolites and biochemical pathways associated
with organ dysfunction in AKI, and build classifiers to predict onset of AKI. In to-
tal, 43%, 21%, and 33% of metabolites measured were affected at some time point
after AKI in the heart, lung, and liver respectively. Additionally, a plasma PLS-DA
classifier was built with 98.46% accuracy and could be utilized to assist doctors in
diagnosis of early onset of AKI. This study demonstrates that AKI is associated with
dramatic changes in heart, lung, and liver metabolism, ATP depletion, and oxidative
stress, with the most dramatic effects in the heart. Treatment methods for AKI should
be explored further specifically focused on amino acid and antioxidant supplementa-
tion and examining the role of glucose and other sugars and starches post AKI.

1 Introduction

1.1 Metabolomics
Metabolomics is the large-scale study of small organic molecules (metabolites) within an
organism, tissue, or cell. Metabolites are defined as molecules that are less than 1,500
Daltons (or atomic mass units; 1 Dalton ⇡ 1 hydrogen atom in mass). Identification of
metabolites in an organism, tissue, or cell is typically performed via mass spectrometry
(MS) or nuclear magnetic resonance (NMR), after processing a tissue or blood sample.
Both methods return a spectra of peaks that are cross referenced with databases matching
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spectra to metabolites. Characterization of these spectra and metabolites has been an on-
going process for the past twelve years. Similar to the human genome project, the human
metabolome project began characterizing human metabolites in 2007. Initially, around
3,000 metabolites were identified in the human body [1]; however, that number has risen
substantially to 114,000 in 2018 [2]. This number is expected to continue to grow as meth-
ods of identification (MS/NMR) become more precise. Some examples of metabolites in-
clude amino acids, sugars, fatty acids, lipids, and more. Metabolomics is closely related
to other types of “omics” techniques such as genomics, transcriptomics, and proteomics.
For context, genomics is the large-scale study of genes, transcriptomics is the large-scale
study of mRNA, and proteomics is the large-scale study of proteins. Metabolomics is a
more powerful approach compared to these methods because metabolites and their con-
centrations are a direct reflection of the biochemical activity and state of a cell, tissue, or
organism, thus revealing a phenotypic state. This state is affected by internal mechanisms
(genes, mRNA, and proteins) in addition to the external environment. In other words,
metabolomics is a direct representation of what is currently occurring in a cell, tissue, or
organism. As a quick example, let’s examine the metabolite glucose. Glucose levels in
the blood are affected by the external environment via an organism’s sugar intake from
food. Internally, they’re affected by how much insulin (which causes re-uptake of glucose
into cells) the pancreas produces, which is controlled by a variety of genes, mRNA, and
proteins. In diabetes, the knowledge of these metabolic interactions are taken advantage
of by having a patient inject insulin to change the state of the metabolite glucose. With
this in mind, it becomes clear that in any disease state, metabolomics can offer insight
to diagnose (by identifying significant metabolites and pathways) and treat diseases (by
further studies to mediate such changes in the metabolome). Thus, metabalomics has vast
potential for the biological and medical communities.

1.2 AKI
Acute kidney injury (AKI) is a common complication, with an incidence of 3% to 20% in
hospitalized patients and 22% to 67% in intensive care unit (ICU) patients [3]. Further, the
incidence of AKI in recent years in hospitalized patients has increased 11% annually [4].
Supportive treatment for severe AKI is renal replacement therapy (RRT), which includes
dialysis, and is based on the removal of damaging substrates in the blood. In terms of
mortality, approximately 2 million people who develop AKI die each year. AKI has been
shown to have varying mortality rates, ranging from 11.6% in one study [3] to 33.7% in
another [5] for hospitalized patients after 90 days. Mortality rates amongst critically ill
(ICU) patients ranged from 40-70% [6, 7]. AKI itself is associated with increased mortal-
ity rates in patients [8, 9]. Clinical and basic research into the mechanisms by which AKI
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leads to increased mortality has revealed that AKI is a systemic disease with widespread,
deleterious effects on distant organs, including the heart, lung, and liver [10, 11, 12, 13].
While it is known that AKI has detrimental effects on distant organs, metabolomics anal-
yses have not been performed.

1.3 Present study
In this paper, metabolomics statistical techniques are overviewed and these techniques are
applied to a metabolomics analysis performed on the heart, lung, liver, kidney, and plasma
tissue at 4 hours, 24 hours, and 7 days after ischemic AKI was administered to mice
to test the hypothesis that the distant organ metabolomes (heart, lung, and liver) would
be characterized by impaired oxidative phosphorylation, increased oxidative stress, and
evidence of alternative energy production. This study is the first of its kind to examine the
metabolome of these distant organs after AKI.

2 Materials and Methods

2.1 Animals
Adult (8-10 week old), male C57BL/6 mice (Jackson Laboratories, Bar Harbor, ME)
weighing between 20-25 g were used. Mice were maintained on a standard diet, and wa-
ter was freely available. All experiments were conducted with adherence to the National
Institutes of Health Guide for the Care and Use of Laboratory Animals. The animal proto-
col was approved by the Animal Care and Use Committee of the University of Colorado,
Denver.

2.2 Surgical protocol
Two surgical procedures were performed: (1) sham operation (i.e., laparotomy - surgical
incision into the abdominal cavity) and (2) ischemic AKI. For all procedures, mice were
anesthetized with intraperitoneal avertin (2,2,2 tribromoethanol; Sigma Aldrich, Milwau-
kee, WI) and a laparotomy was performed. In the ischemic AKI group, both renal pedicles
were clamped for 22 minutes. Mice received 500 µl saline with buprenex subcutaneous
injection prior to surgery; 500 µl saline was administered by subcutaneous injection every
day after surgery. Sham operation consisted of the same procedure except that clamps
were not applied.
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2.3 Experimental groups and accounting for mice included in exper-
iments and analysis

The study began with 10 mice per group for each of the 7 experimental groups: 1) normal
(no surgical procedure), 2) 4 hour sham, 3) 4 hour AKI, 4) 24 hour sham, 5) 24 hour AKI,
6) 7 day sham, and 7) 7 day AKI for a total of 70 mice. However, 1 mouse in the 7-day
sham group died, and 4 mice in the 7-day AKI group died. Thus, the numbers of animals
included in the final data analysis are as follows: 1) normal: n=10, 2) 4 hour sham: n=10,
3) 4 hour AKI: n=10, 4) 24 hour sham: n=10, 5) 24 hour AKI: n=10, 6) 7 day sham: n=9,
and 7) 7 day AKI: n=6. Serum creatinine and blood urea nitrogen (BUN) were measured
to confirm onset of AKI. Both measures are widely utilized diagnoses standards for AKI.

2.4 Collection and preparation of plasma, heart, kidney, liver, lung
samples

Blood was obtained via cardiac puncture and centrifuged at 3,000 rpm at 4�C for 10 min-
utes; plasma was collected and centrifuged a second time at 3,000 rpm for 1 minute. The
left ventricle of the heart, the lung, liver, and left kidney were collected, weighed, snap
frozen in liquid nitrogen, and then stored at �80�C.

2.5 Metabolomics sample preparation, data collection, and metabolomics
data overview

Frozen heart, liver, lung and kidney samples were milled with a mortar and pestle in the
presence of liquid nitrogen, then weighed to the nearest 0.1 mg and extracted in ice-cold
lysis/extraction buffer at a concentration of 10 mg/mL. Samples were then agitated at 4�C
for 30 min and then centrifuged at 10,000 g for 15 min at 4�C. Protein and lipid pellets
were discarded, while supernatants were stored at �80�C until metabolomics analyses via
ultra-high pressure liquid chromatography coupled to online mass spectrometry (UHPLC-
MS) as previously reported [14]. Plasma samples were snap frozen and stored at �80�C
until UHPLC-MS analysis.

343 metabolites were of interest (pre-selected from common energy metabolites and
pathways) and mined from the identified peaks in the un-targeted UHPLC-MS metabolomics
analysis. Metabolites were identified in each organ (124 for the heart, 132 for the lung,
177 for the kidney, 141 for the liver, and 128 for the plasma).
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2.6 Heart and lung ATP assays
Pre-weighed murine heart left ventricle (LV) (from a separate cohort of mice) and lung
tissue were processed for determination of myocardial and pulmonary ATP content using
commercially available reagents as per manufacturer’s instructions (Abcam; ab833355).
Briefly, flash-frozen LV and lung tissue was homogenized in ATP assay buffer using
Dounce homogenizer. The lysate was centrifuged at 13,000g at 4�C, and supernatant
subjected to deproteinization procedure via TCA precipitation (Abcam; ab204708). The
deproteinized samples were incubated with necessary reaction components for 30 minutes
at room temperature protected from light. Fluorescence signals from samples were then
measured on a microplate reader at Ex/Em = 535/587 nm. Serial dilutions of ATP were
used to generate a standard calibration curve. ATP concentrations were calculated from
the standard curve data and normalized to corresponding tissue weight.

3 Metabolomics Techniques and Statistical Analyses

3.1 Overview
There are a wide variety of metabolomics techniques. Generally, the field of metabolomics
has a lot of moving parts, from actual laboratory experiments, to mass spectrometry, to
spectra preprocessing and metabolite identification, to statistical analysis, and finally to in-
terpretation of results via knowledge of biochemical pathways and individual metabolites.
A wide domain of knowledge is necessary to understand all of these concepts, and this
section aims to specifically elaborate post metabolomics data collection statistical analysis
techniques in depth and their application to this study.

3.2 Metabolomics Data Pre-processing
After metabolites have been identified from mass spectrometry (where extensive spectra
pre-processing is also done [14]), the raw data is in the form of an nxp data matrix with
n samples and p metabolites and each corresponding matrix element containing a con-
centration or peak intensity value from the NMR or MS spectra. The next step in the
metabolomics workflow for statistical analysis is to first remove missing values and nor-
malize and scale the metabolite data for further statistical analysis. There are a variety of
methods to do this, namely mean value, small value, median value, random forest, and k
nearest neighbors (kNN) imputation. In this study, missing values were replaced using the
kNN algorithm, with k = 5, identifying the five nearest samples to the sample with miss-
ing values, and imputing the average of their values for the corresponding missing value.

7



This has been found to perform well across un-targeted metabolomics experiments [15].
In metabolomics data, missing values are missing for three primary reasons: the metabo-
lite concentration was above or below the limit of detection, metabolite is not present in
the biological sample, or the metabolites peak was masked due to interaction with other
metabolites. For single samples with missing values for metabolites, kNN imputation
makes sense assuming samples nearby had measurements for the missing metabolite. Fol-
lowing imputation, normalization, scaling, and/or numerical transformation should be per-
formed. There are a variety of common techniques to perform including normalization by
sum, mean, reference sample, scaling by unit variance, range, pareto, and numerical trans-
formation by log or cubed root. The choices of these depends on the study at hand. In this
study. metabolites’ raw peak areas were range scaled in order to allow for homoscedastic
statistical tests [16, 17]. Range scaling metabolites is ideal for exploratory metabolomics
analysis as it allows all metabolites to be favored equally and compares metabolites rela-
tive to their biological response range [16]. Range scaling performs the following for each
metabolite x:

exi j =
xi j � x̄i

ximax � ximin

(1)

3.3 P >> N problem
Metabolomics data are not the traditional type of dataset where sample size n is equal
to or greater than feature size p. In fact, metabolomics data typically results in p �
n problems, so much so that the primary goal of many statistical methods is to select
features, reduce the dimensionality of the data, and generalize features via pathways. As
analysis techniques become even better [2], un-targeted metabolomics experiments will
likely result in thousands and tens of thousands of features for each sample, emphasizing
the need for dimension reduction as the focused technique for any metabolomics study.
As a note, getting more samples for metabolomics studies is often costly and difficult and
acquiring samples to the point where p ⇡ n is not feasible. A typical sample run for an
un-targeted analysis on a UHPLC-MS can cost around $500 per sample. This on top of
the lab work and sample preparation beforehand make it a costly investment. Thus, the
primary focus of the statistical analysis is dimension reduction and pathway identification.
In this study, metabolites are individually identified as significant via univariate statistical
methods and filtered based on significance. Additionally, unsupervised and supervised
dimension reduction techniques are used to further find important metabolites and their
trends and build a classifier model.
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3.4 Univariate methods
Univariate statistical analyses methods for metabolomics data have been studied before
[18]. Overall, data must closely meet basic requirements to perform common univariate
methods: normality, homoscedasticity, and independence. Hence, missing value imputa-
tion and scaling of the data was performed to meet normality and homoscedastic require-
ments, and independence between samples was assumed. Common univariate methods in
metabolomics include t-tests, fold change analyses, and ANOVA (depending on number of
sample groups). In this study, ANOVA (significant threshold p  0.05) was performed on
scaled metabolite data on all organs. ANOVA was used to find metabolites across groups
with significant differences of means; further, post hoc analysis was done to find the rel-
evant groups that were significantly different from each other. The relevant groups were
defined as follows: (i) Significant to AKI (Sig2AKI): at each time point for each metabo-
lite, a significance test was done to determine if there was statistical significance between
AKI and normal (p  0.05), AKI and sham (p  0.05), and no significance between sham
and normal (p � 0.05), (ii) Intensified in AKI (IiAKI): at each time point for each metabo-
lite, a significance test was done to determine if there was statistical significance between
AKI and normal, AKI and sham, and sham and normal (directionality i.e. increase vs de-
crease was also taken into account here), (iii) Opposite in AKI (OppInAKI): at each time
point for each metabolite, a significance test was done to determine if there was statis-
tical significance between AKI and normal, AKI and sham, and sham and normal, with
the condition that the sham and AKI group concentrations had opposite effects compared
to normal, (iv) No Effect in AKI (NoEfAKI): at each time point for each metabolite, a
significance test was done to determine if there was statistical significance between AKI
and sham, sham and normal, and no significance between AKI and normal. Metabolites
that met the conditions for these four groups were hypothesized to have some effect in
AKI, whether it be a direct effect, an increased effect, an opposite effect, or an inhibitory
effect. Due to the multiple testing problem, the Benjamini-Yekutieli p-value adjustment
method was used to determine statistical significance for these pre-selected groups. The
Benjamini-Yekutieli method has been found to allow for dependence assumptions across
variables [19], which make it a desired method for metabolomics.

3.5 Unsupervised methods
Multivariate statistical analyses methods are primarily used in metabolomics data to re-
duce dimensionality. Additionally, they help with identifying and understanding trends
across metabolites and samples, identifying sample outliers, and visualizing high dimen-
sional spaces. The two higher level statistical categories used for multivariate analysis in
metabolomics are unsupervised and supervised learning methods. The main difference
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between these two types of approaches is that unsupervised learning does not consider
class membership, while supervised learning does. Unsupervised learning thus provides
an overview of the groups and trends in the data [20], without a knowledge of the un-
derlying groups. There are many unsupervised learning methods that can be used for
metabolomics analyses such as hierarchical clustering analysis (HCA), principal compo-
nent analysis (PCA), k-means clustering, and self-organizing maps (SOM). In this study,
two of these methods were used: HCA and PCA. They are explained below.

3.5.1 Hierarchical clustering analysis

HCA is a clustering method that uses a hierarchical dendrogram to display trends in the
data. It is an agglomerative clustering technique where each feature is initialized to its
own cluster and iteratively compared and “moved” near other clusters that are close in
distance or highly correlated. Clusters are compared by a distance or correlation metric
such as Euclidean distance or Pearson’s correlation with a linkage method. Common
linkage methods include single linkage, complete linkage, and average linkage, where the
minimum, maximum, or average of the distance or correlation metric between two clusters
is used [21]. Agglomerative clustering also has no pre-defined number of clusters. After
clustering has been performed, the dendrogram may be cut to create a specified number
of clusters; however, this is not required. In this study, HCA was performed using the
Pearson (n� 1) correlation metric with an average linkage method. Instead of a distance
metric like Euclidean distance, the Pearson correlation metric was used to see similarity
between metabolites and group metabolites based on correlations [22]. Furthermore, the
average linkage method was chosen as it has been found to perform better than the single
and complete linkage methods in gene set analysis [22]. HCA was performed on only
significant to ANOVA metabolites in all organs; in addition, supervised sample wise HCA
was performed to help identify outliers, where HCA was informed to cluster sample groups
together.

3.5.2 Principal component analysis

PCA is a dimensionality reducing algorithm that helps identify sample group separation,
sample outliers, metabolites contributing to group separation, and metabolite relationships.
PCA utilizes singular value decomposition (SVD) or eigen decomposition of the corre-
lation or covariance matrix to linearly transform the features into principal components
(PCs) that represent the variance in the data. For a brief mathematical overview, PCA
finds n�1 (when p � n) principal components:

Z j = Xf j where j = 1, . . . ,n�1 (2)
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where f j is the loading vector or the “weights” of each feature in the projected space
and each principal component Z has decreasing variance - Var(Z1) � Var(Z2) � · · · �
Var(Zn�1) and is orthogonal to each other PC Z1 ? Z2 ? · · ·? Zn�1. This is very useful in
metabolomics data analysis as there are typically hundreds to thousands of features being
measured. Since the principal components represent the variability in the original dataset,
they can be used as new features for analyses, instead of using all features. A certain
number of PCs are chosen that cumulatively represent a high percentage of the variabil-
ity in the data. PCA works best when between group variation is significantly more than
within group variation - providing a means to discover groups and discover variables that
separate these groups [23]. In the present study, metabolites solely significant to ANOVA
were analyzed through PCA for each organ. SVD was utilized for the decomposition of
the feature matrix and the first three principal components were analyzed and visualized.
The scores (samples) plots were graphed to see group variation and look for sample out-
liers, and bi-plots were graphed to see metabolite correlations and to see contributions of
metabolites to the group variation based off the cosine similarity metric.

3.6 Supervised methods
There are many supervised learning methods that can be implemented for metabolomics
analyses such as support vector machines (SVM), partial least squares discriminant anal-
ysis (PLS-DA), orthogonal partial least squares discriminant analysis (OPLS-DA), and
more [20]. The primary goal of these methods is to reduce dimensionality, build classifiers
to predict class membership, find correlations between metabolites, and identify metabo-
lites specifically contributing to group separation. The supervised method implemented in
this study was PLS-DA.

3.6.1 Partial least squares discriminant analysis

To understand PLS-DA, it is important to understand PLS regression (PLS-R) as the only
difference is that PLS-DA outputs discrete classes. PLS-R is widely used in a variety of
chemometrics studies, where the number of features is far greater than the number of sam-
ples, and the features are highly correlated [24]. Thus, it is well suited for metabolomics.
PLS-R is similar to the PCA model and aims to decompose two matrices, the feature ma-
trix X and the response matrix y utilizing the same scores matrix T :

X = T P+E, y = T q+ f (3)

where E and f are residuals, and P and q are the loadings for the matrix X and vector y
respectively. Following decomposition, each component of the model is calculated addi-
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tively following the algorithm below [25]:

1. Calculate PLS weight vector:
w = XT y

2. Calculate the scores:
t =

Xwp
Âw2

3. Calculate the x loadings:

p =
tT Xp

Â t2

4. Calculate the y loadings:

q =
yT tp
Â t2

5. Obtain X residual matrix:
Xresid = X � t p

6. Obtain y residual matrix:
yresid = y� tq

7. Repeat for the max number of components specified with:

X = Xresid and y = yresid

Then, using the regression relationship y = Xb + f = T q+ f , it follows that ŷ can be
predicted by:

ŷ = Xb (4)

where b =W (PW )�1q. Overall, the PLS-DA method finds the metabolites (X variables)
that best explain the maximum variation in the groups (y vector) and projects them into
a reduced subspace. It is like PCA in that it produces both scores and loadings plots;
however, PLS-DA tries to find the metabolites specifically causing the variance in the
groups, whereas PCA is finding the maximum variance of all samples irrespective of the
groups.

Because of the p � n problem in metabolomics experiments, PLS-DA often results in
a high number of misclassifications, and overfitting and validation procedures need to be
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performed. In typical classification procedures, a dataset is broken up into a training set,
testing set, and validation set. With small sample sizes, it is difficult to split the data into
train, test, and validation splits. Many methods have been examined for best building PLS-
DA models in metabolomics experiments [24, 26]. Two methods, a single cross validation
(CV1) and double cross validation (CV2) [26, 27] have been found to perform best in
selection of the number of dimensions (latent variables) and model quality assessment.
In CV1, a traditional cross validation is performed where the samples are split into a
training and validation set. Following, the training set is used to build multiple PLS-DA
models with a maximum number of latent variables specified for the model parameters.
The validation set is then tested on the models to select the optimal number of latent
variables based off of some metric (i.e. number of misclassifications). When the best
model has been selected, all samples are tested and the quality of the model is reported.
However, this is not ideal as there is no unseen test set in this model and all samples are
used in the training procedure. The other method, CV2, splits the data into a test set and
a rest set. Then, the rest set is utilized in the traditional CV1 approach to identify the best
number of latent variables. The best model is then tested on the held out test set. This
is repeated such that every sample has been in the test set once, and a set of models are
found. Often, this entire procedure is repeated and the best average quality across the k
outer folds is selected. The CV2 approach is visualized in Figure 1 [27].

Figure 1: The double cross validation technique

Another problem with PLS-DA is that it is too ”good” at separating data based on their
classes. For example, given random data and random class assignment, PLS-DA can find
a separation between these groups. Thus, separation of groups is meaningless, without
further testing. To overcome this problem, permutation testing is done, where sample
classes are randomly permuted (i.e. class are switched in the dataset, giving samples wrong
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labels), PLS-DA is performed, and the error assessment metric is recorded. If such error
metric for the non-permuted model is statistically significant compared to the permuted
models, then a model can significant compared to models built on random data [24]. In
the present study, PLS-DA was performed on each organ with CV2 validation where k = 5
on the inner CV loop and k = 6 on the outer CV loop. The number of misclassifications,
NMC, error metric was used to evaluate the model:

NMC = FP+FN (5)

where FP is the number of false positives (predicting AKI when there is not AKI) and FN
is the number of false negatives (predicting sham or normal when there is AKI). Further,
permutation testing was done 100 times to examine if the non-permuted data was statisti-
cally significant compared to the permuted data. The permutation p-values were calculated
from:

P =
1+#(NMCp  NMCnp)

N
(6)

where the NMCp value is the NMC value for the permuted data, NMCnp is the NMC value
for the non-permuted data, and N is the number of permutations.

3.7 Pathway enrichment analysis
After performing individual metabolite analysis, it is useful to generalize metabolites to
their associated biochemical pathways since pathways are revealing of the relationships
between individual metabolites and provide insight into the mechanisms being affected
by an experimental condition. For example, the metabolite glucose is associated with a
multitude of pathways, namely glycolysis, which includes a variety of metabolites related
to the synthesis and decomposition of glucose. More than likely, multiple metabolites in
glycolysis were measured in a metabolomics study, so pathways can be identified offer-
ing broader insight into the activity of the metabolome, irrespective of whether or not all
metabolites in the pathway were measured. In pathway enrichment analysis, metabolites
are associated with their meta-data from a biological database (i.e. the KEGG database).
This meta-data includes the associated pathways of a particular metabolite. Then, enrich-
ment analysis can take a list of metabolites with their concentration data to determine if
a pathway is significantly active, under the assumption that this pathway is altered by the
experimental conditions [28]. There are a few downsides to enrichment analysis, mainly
that the algorithms are restricted to the pathway databases available and that there is no
consensus on discriminating an up or down regulated pathway [29].
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3.7.1 Pathway activity profiling

Pathway activity profiling (PAPi) is an enrichment analysis technique that calculates path-
way activity scores (AS) for a given sample with a variety of metabolite concentration
measurements. The algorithm finds the metabolites associated with every single pathway,
and cross references those metabolites with the metabolites measured in the dataset [30].
Then, an activity score is calculated for each identified pathway in each sample:

SA(P) =
(r1 + r2 + · · ·+ rn)N

K
(7)

where P is a pathway and r1, . . . ,rn are the metabolites’ concentrations measured in the
pathway, N is the total number of metabolites identified via metabolomics and cross ref-
erenced with the pathway metabolites, and K is the total number of metabolites in the
pathway. This score can be calculated for all samples under all experimental groups, and
following, a t-test or ANOVA can be performed to see if there is statistical significance
across sample groups’ pathway activity scores. The PAPi algorithm has two assumptions
- (i) the more metabolites identified by metabolomics means a higher path activity and (ii)
the greater the activity of a pathway, the lower the concentration of the identified metabo-
lites in the pathway. The second assumption is based off of higher pathway activity being
characterized by metabolites in flux, since metabolites in flux would have higher con-
version rates and thus lower abundances. This is not true for all pathways; specifically,
glycolysis intermediates have been found to have high abundances in a high state of flux
[30]. Because of the second assumption, activity scores are scaled to a reference condition
and inverted. In the present study, PAPi was performed to identify pathways significantly
altered in AKI in all organs utilizing the mouse pathway KEGG database and the normal
group was used as the reference condition. ANOVA was performed to find pathways with
significantly different activity scores across all groups. The activity scores were visualized
in a heat map and hierarchical clustering was performed.

3.7.2 Metabolite set enrichment analysis

Metabolite Set Enrichment Analysis (MSEA) is another method to perform enrichment
analysis on a metabolomic dataset. There are three well known methods for MSEA - over-
representation analysis (ORA), quantitative enrichment analysis (QEA), and single sample
profiling (SSP). ORA uses a list of significant metabolites to see if they are identifiable in
metabolic pathways. QEA uses concentration data from multiple samples to determine
significant pathways between two sample groups, and SSP is used for single samples and
uses concentration data from a sample compared to normal concentration data to determine
the significant pathways [31]. QEA was chosen for the present study. QEA selects path-
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ways where a few metabolites are significantly changed or a lot of metabolites are slightly
changed. Two methods exist for QEA, Goeman’s global test and global ANCOVA. Both
have been found to produce biologically meaningful results in gene set analysis and are
relatively equal in power [32]. Goeman’s global test was chosen for this study. It exam-
ines whether identified metabolites are predictive of a sample group (note that this only
supports binary classification). Goeman’s global test utilizes logistic regression [29]:

P(ŷ|b ) = s

 
a +

m

Â
j=1

xi jb j

!
(8)

where b j is the regression coefficient for the metabolite j, j = 1, . . . ,m, and m is the num-
ber of metabolites identified in the pathway. To test whether there is a statistical effect on
the experimental conditions is equivalent to testing H0 : b1 = b2 = · · · = bm = 0. How-
ever, this null hypothesis is not testable for p � n problems, and Goeman overcomes this
problem by the assumption that all coefficients belong to a common distribution resulting
in testing that the covariance of this distribution is 0, H0 : t2 = 0 [33]. A Q statistic is
utilized to determine the quality of the prediction. Permutation testing is done to examine
if the Q statistic from the non-permuted results is significantly different from the permuted
results. Lastly, an adjusted p-value is reported. In the present study, MSEA was performed
using MetaboanalystR 2.0 [17], utilizing the mouse pathway database from KEGG and the
Holm p-value adjustment. Pre-selected binary groups were compared, and the results were
further explored to look for effect of AKI pathways by comparing the significant pathways
identified in QEA, following Sig2AKI, IiAKI, OppInAKI, NoEfAKI criteria.

4 Results and Discussion

4.1 Time course of AKI
Serum creatinine and BUN were determined in normal mice and at each time point after
sham and AKI. As shown in figure 2, serum creatinine was significantly increased at 4 and
24 hours post procedure in AKI versus sham and was not significantly different at 7 days;
BUN was significantly increased in AKI versus sham at all three time points. Based off of
these measurements, AKI was most prevalent at 24 hours.
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(a) Time Course: Serum Creatinine (b) Time Course: BUN

Figure 2: Time course of AKI. (A) Serum creatinine and (B) BUN were determined in normal controls and
at 4 hour, 24 hours, and 7 days after Sham and AKI. (n=6 to 10). (One way ANOVA comparing the mean all
groups with Tukey’s multiple comparison test. Mean+/-SEM. * P < 0.001 vs. 4 hr Sham; **P < 0.0001 vs.
24 hour sham; NS vs 7 day sham; ***P < 0.0001 vs. 4 hr Sham, 24 hour sham, or 7 day Sham respectively).

4.2 AKI and distant organ effects
4.2.1 Significant metabolites

Of the 343 of interest metabolites, 124, 141, 132, 177, and 128 were measured in the heart,
lung, liver, kidney, and plasma, respectively.. Based on univariate ANOVA, 89, 95, 103,
142, and 119 were significantly different among experimental groups in the heart, lung,
liver, kidney, and plasma respectively (see Table 1).

Organ Number Metabolites Measured Significant to ANOVA
Heart 124 89
Lung 141 95
Liver 132 103
Kidney 177 142
Plasma 128 119

Table 1: Metabolites significant to ANOVA by organ

Hierarchical clustering analysis (HCA) and principal component analysis (PCA) were per-
formed for the significant to ANOVA metabolites for each organ to visualize overall trends
in the data. The HCA heat maps for the heart, lung, liver, kidney, and plasma are shown in
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supplementary section 6.1; the PCA scores plots and bi-plots are shown in supplementary
section 6.2. Both HCA and PCA reveal that the most notable differences in metabolites
occurred in the 24 hour AKI group for all organs with principal component (PC) 1 primar-
ily explaining 24 hour AKI in the heart, PC 2 and PC 3 primarily explaining 24 hour AKI
in the lung, PC 1 and PC 2 primarily explaining 24 hour AKI in the liver, PC 1 and PC
3 primarily explaining 24 hour AKI in the kidney, and PC 1 primarily explaining 24 hour
AKI in the plasma. The metabolites with the highest sum of squared cosines between each
principal component are listed in supplementary section 6.7

Additionally, PLS-DA was performed in order to identify the metabolites that are con-
tributing to sample group separation (see section 6.8) and build a model to classify sam-
ples. PLS-DA was trained using the CV2 approach. The accuracies, NMC, precision,
recall, component range, and permutation p-value results are reported for the five model
sets built on the heart, lung, liver, kidney, and plasma in Table 2.

Organ Accuracy NMC Precision Recall #Comp P Value
Heart 93.84% 6.15% 88.89% 88.89% 6-15 P < 0.01
Lung 90.77% 9.23 % 85.71% 85.71% 10-16 P < 0.01
Liver 86.15% 13.85% 79.31% 76.67% 9-19 P < 0.01
Kidney 89.23% 10.77% 78.13% 78.13% 9-18 P < 0.01
Plasma 98.46% 1.54% 96.30% 96.30% 9-20 P < 0.01

Table 2: PLS-DA classification quality measures, model parameters, and permutation results

Overall, the best set of PLS-DA models to predict onset of AKI were the plasma classifiers.

4.2.2 Specific metabolites and metabolic pathways affected in distant organs by
AKI

Specific metabolites affected by AKI (based off of the pre-defined effect of AKI groups:
Sig2AKI, IiAKI, OppInAKI, NoEfAKI) in the heart, lung, liver, kidney, and plasma are
shown in supplementary section 6.3. Overall, 53 (43%), 30 (21%), 43 (33%), 159 (90%),
and 125 (98%) measured metabolites in the heart, lung, liver, kidney, and plasma respec-
tively were affected by AKI. The most dramatic metabolic changes occurred at 24 hours
for all organs, and are reported in table 3. At 4 hours, changes were not as severe in the
heart, lung, and liver. Interestingly, metabolic effects were still noted 7 days post AKI,
with larger changes in the kidney, plasma, and heart.

Furthermore, PAPi analysis was performed and activity scores for identified pathways
were generated for every sample across all organs. HCA heat maps were created for
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Organ 4 Hours I/D 24 Hours I/D 7 Days I/D
Heart I:4 D:4 I:14 D:18 I:10 D:3
Lung I:5 D:1 I:11 D:6 I:5 D:2
Liver I:3 D:0 I:19 D:20 I:1 D:0
Kidney I:26 D:35 I:25 D:34 I:22 D:17
Plasma I:27 D:9 I:34 D:33 I:18 D:4

Table 3: Number of metabolites that were increased (I) or decreased (D) due to the effect of AKI

ANOVA significant pathways and are displayed in supplementary section 6.4 for the heart,
lung, liver, kidney, and plasma. Additionally, MSEA QEA utilizing Goeman?s global test
was performed and enriched pathways across all organs are displayed in supplementary
section 6.5. There were a number of pathways enriched that were significant to AKI, as
depicted in Table 4. The most dramatic pathway changes occurred at 24 hour AKI.

Organ 4 Hours 24 Hours 7 Days
Heart 3 25 1
Lung 0 1 0
Liver 0 10 15
Kidney 24 22 3
Plasma 11 30 0

Table 4: Number of enriched pathways due to the effect of AKI

4.2.3 ATP levels in the heart and lung

ATP levels were measured in normal mice, sham, and AKI at 4, 24, and 72 hours (in a
separate cohort of mice) in the heart and 4 and 24 hours, and 7 days in the lung. As shown
in figure 3, ATP levels were significantly decreased at 24 hours after AKI in both the heart
and lung. Additionally, ATP levels were still significantly decreased in the heart at 72
hours. Overall, ATP depletion foreshadows need to produce ATP via alternative energy
metabolism.

4.2.4 Amino acid deficiencies

In the heart, several amino acids were decreased at 4 and 24 hours after AKI including
alanine, aspartate, glutamate, glycine, and tyrosine, see box plots in supplementary sec-
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(a) ATP levels in the heart at 4, 24, and 72
hours

(b) ATP levels in the lung at 4, 24 hours, and
7 days

Figure 3: ATP levels in the heart and lung

tion 6.6.1. Additionally, several amino acid pathways were enriched including phenylala-
nine metabolism, lysine degradation, phenylalanine, tyrosine and tryptophan biosynthesis,
glycine, serine and threonine metabolism, lysine biosynthesis, tyrosine metabolism, ala-
nine, aspartate and glutamate metabolism, histidine metabolism, and more.

Amino acid depletion commonly occurs during cardiac ischemia and other forms of
cardiac stress and reflects a number of injury-associated events such as ischemia reper-
fusion injury, ATP depletion, inadequate oxidative phosphorylation, increased alternative
energy production, and increased oxidative stress [34, 35, 36]. In a normally functioning
heart, amino acid metabolism contributes a very small percentage of ATP production; how-
ever, when oxidative phosphorylation is inadequate, as seen when there is decreased blood
flow to the heart, amino acid metabolism increases and becomes an important source of
ATP production [35]. In particular, glucogenic amino acids such as aspartate, glutamate,
glycine, histidine, alanine, can be converted to glycolysis and TCA cycle intermediates
to generate ATP. Other amino acids, histidine, trans-4-hydroxy-L-proline, and L-citrulline
decreased in the sham group at 24 hours but no effect in AKI. Both L-citrulline and trans-
4-hydroxy-L-proline are involved in arginine and proline metabolism, which ends in the
production of glutamate. This pathway was intensified in AKI compared to sham suggest-
ing the need to produce glutamate in AKI mediated heart injury.

The reduction in glutamate and aspartate is notable as these amino acids are reduced in
cardiac biopsies in patients after cardiac bypass surgery and reductions are associated with
ATP depletion and cardiac ischemia [34, 35, 36]. Additionally, the depletion of glycine is
notable and has been seen to occur after myocardial infarction in rats [37]. Thus, decreased
glutamate, aspartate, and glycine likely reflect ongoing amino acid metabolism, in addition
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to the other decreases in glucogenic amino acids: alanine and tyrosine. Histidine, another
glucogenic amino acid, only saw a decrease in the sham group. Many of these depletions,
specifically of glutamate and glycine, is also suggestive of increased oxidative stress and an
attempt to restore depleted glutathione stores (discussed further, below). There were a few
amino acids depleted in the lung and liver. Of note, glutamate in the lung was decreased,
which could also be suggestive of oxidative stress in the lung. Glutamate has a multitude of
roles in metabolism, neurotransmission, and signaling, and its metabolism dysregulation
has been observed in lung cancer patients [38, 39]. In the liver, serine was depleted, and
two amino acid pathways were enriched: glycine, serine and threonine metabolism and
arginine and proline metabolism. Serine depletion in the liver has been seen in patients
with non-alcoholic fatty liver disease (NAFLD) [40]. See supplementary section 6.6.2 for
box plots of glutamate and serine in the lung and liver.

4.2.5 Alternative energy metabolism

Metabolites involved in glycolysis, the citric acid (TCA) cycle, pentose phosphate path-
way, and purine and pyrimidine metabolism were affected in the heart, lung, and liver
after AKI and suggest a shift toward alternative energy production (non-oxidative energy
production), in addition to the production of citric acid intermediates for use in oxidative
phosphorylation. In the heart, increases in glucose, ribose, and pantothenate are indicative
of the need to produce ATP, in addition to building the intermediates for the TCA cycle,
which both produce ATP and are used downstream in oxidative phosphorylation. Fur-
ther, intermediates in these pathways, such as 2-oxoglutaramate and 3-oxalomalate saw
significant increases in the heart. Malate, succinate, and D-glucose-6-phosphate also saw
increases; however, did not meet the significance threshold. The pantothenate and CoA
biosynthesis and pentose phosphate pathways were both enriched in the heart. In the lung,
D-ribose and L-arabinose saw significant increases. The pentose and glucuronate intercon-
versions pathway was also significantly enriched which interconnects arabinose to the pen-
tose phosphate and citric acid cycle pathways. Interestingly, the liver showed opposite ef-
fects with glucose, glycolysis intermediates (D-glucose-6-phosphate, 3-oxalomalate, 2-3-
bisphosphoglycerate, D-glyceraldehyde 3-phosphate), TCA cycle intermediates (malate),
pentose phosphate pathway intermediates (5-phospho-alpha-D-ribose 1-diphosphate,6-phospho-
D-gluconate, D-glucono-1-5-lactone 6-phosphate) while maintaining increases in ribose,
arabinose, pantothenate, and 2-hydroxyglutarate. The decrease in glucose in the liver
is notable as this has been found to occur in fasting, where the liver will produce glu-
cose via glycogenolysis [41]. Given the need for glucose in other organs to produce ATP,
glycogenolysis in the liver is probable after AKI. See supplementary section 6.6.3 for box
plots of alternative energy metabolites in all organs.
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In the heart, energy shifts such as these are common during cardiac stress from mul-
tiple causes such as heart failure [42, 43], cardiac ATP depletion [44], myocardial is-
chemia/infarction, and myocarditis [45]. In the lung, this phenomenon is also seen in
non-small cell lung cancer and in smokers basal cells [46]. In the liver, fasting [41], non-
alcoholic steatohepatitis (NASH), and NAFLD [47] have been associated with alternative
energy production as well.

Further, the increase in purine metabolism is seen by the decreases in purines adenine
and adenosine in the heart (purines were not significantly decreased in the lung or liver)
and accompanied by increases in their end products (5-hydroxyisourate and S-allantoin).
All organs had increases in the purine degradation product S-allantoin. Further, pathway
analysis found purine metabolism significantly enriched in the heart and liver. Pyrimidine
consumption is also present as evidenced by increases in 5-6 dihydrothymine, an end prod-
uct of pyrimidine metabolism, across all organs. Pyrimidine metabolism was enriched in
the heart and liver as well. See supplementary section 6.6.4 for box plots of purine and
pyrimidine metabolites in all organs.

4.2.6 Oxidative stress

In all organs, there were extensive indications of metabolite changes associated with ox-
idative stress after AKI, particularly at 24 hours. In the heart, increased oxidative stress is a
common sign of cardiac stress and occurs in a wide range of diseases including myocardial
infarction [37], myocarditis [45], dilated cardiomyopathy [48], and heart failure [49, 50].
In the lung, it has been related to asthma, inflammatory lung disease, COPD, acute lung
injury, pulmonary fibrosis, and lung cancer [51, 52]. In the liver, oxidative stress has been
found in chronic hepatitis C virus infection, alcoholic hepatitis, and NAFLD [53]. In both
the heart and the liver, there was a significant decrease in glutathione (GSH). Though,
not significant in the lung, an inhibitory effect of GSH seemed to occur at 24 hour AKI
compared to the sham group. GSH is a potent anti-oxidant which is crucial to normal
cardiac function [49, 50], lung function [52], and liver function [54]. Glutathione is a key
defender against excess reactive oxygen species (ROS), which are detrimental to normal
cellular function. Further, it is an early trigger of apoptotic cell death [55].

Additional markers of oxidative stress after AKI in the heart included increased 2-
aminoadipate (a-aminoadipate), 5-hydroxyisourate, S-allantoin, ascorbate and decreased
thioredoxin disulfide. In the lung, an increase in S-allantoin and decrease in thioredoxin
disulfide was seen. In the liver, there was an increase in S-allantoin. a-aminoadipate is
a product of lysine degradation and a marker of protein oxidation [53, 56]. Its increase
may be the result of oxidative stress and protein oxidation in addition to lysine degrada-
tion. The lysine degradation pathway was also found to be enriched in the heart. Purine
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degradation leads to an increase in uric acid and downstream products 5-hydroxyisourate
and S-allantoin via ROS-generating reactions [57]. Thus, increased S-allantoin is a strong
biomarker for increased oxidative stress [58]. Ascorbate is significantly increased in the
heart (the lung and liver saw non-significant increases), even though it itself is an anti-
oxidant. This was also seen in rat models of heart failure [43]. See supplementary section
6.6.5 for box plots of oxidative stress metabolites in all organs.

4.3 Overall implications
Metabolomics analysis applied to AKI offers immense insight into the complex disease.
This study demonstrates that AKI has substantial effects on the heart, lung, and liver,
especially after 24 hours. In total, 43%, 21%, and 33% of metabolites measured were af-
fected at some time point after AKI in the heart, lung, and liver respectively. Considering
that only 124, 141, and 132 metabolites were identified from metabolomics analysis in
the three organs in total, these percentages are substantial and outline drastic underlying
changes post AKI, especially in the heart. Interestingly, the metabolites affected after AKI
in the heart are similar to the changes seen after direct cardiac injury from myocardial
ischemia reperfusion injury. This is corroborated by amino acid depletion, glutathione
depletion, increased oxidative stress, and evidence of anaerobic energy production. Cor-
respondingly, the lung also experienced similar effects, with amino acid, glutamate, being
depleted significantly, glutathione depletion, increased oxidative stress, and markers of
alternative energy production. In the liver, it was a similar story, with amino acid, ser-
ine, significantly depleted, glutathione depleted, increased oxidative stress, and signs of
alternative energy metabolism. Overall, AKI causes energy substrate depletion, increased
oxidative stress, and changes in energy metabolism in distant organs. Whether or not these
changes are due to consumption or inhibited production of such substrates cannot be de-
duced from this study. However, given the lack of ATP in both the heart and the lung and
the decrease of glucose in the liver, it is plausible that the substrates are being consumed
for ATP generation.

Future studies should examine if supplementation of amino acids and/or antioxidants
are a viable treatment option for AKI. In the heart, studies have been performed showing
that during cardiac ischemia supplementation with glutamate and aspartate improves ATP
production [36]. In the lung, amino acid supplementation has improved severe COPD and
lung cancer outcomes [59, 60]. In terms of glutathione, it has been found to be essential for
normal cardiac function [24, 50] and liver function [54], and supplementation is beneficial
during hypoxia and bypass surgery [35]. In the lung, inhalation of glutathione has been
found to address a number of lung diseases [61], though as indicated, further studies need
to be performed. From a glucose perspective, its increase in both the heart and the lung
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post AKI is indicative of increased glycolysis [30], and even though glucose is increased,
its stores in the liver are depleted. Overall, the decreases in amino acids, antioxidants, and
increases in glucose (decrease in the liver) are widespread after AKI, and mediations for
such changes should be explored.

Currently, the supportive treatment of severe AKI, renal replacement therapy (RRT),
which includes dialysis [62] is based around the random removal of metabolites from the
blood, due to the fact that increases in metabolites are detrimental to distant organs and
patient outcomes. Although the plasma did have 34 significantly increased metabolites,
there were also 33 that were significantly decreased; thus, aimless removal of metabolites
is not the only solution to treat AKI. Further, removal of already depleted metabolites
such as amino acids, antioxidants, and glucose could harm the patient even more, as these
metabolites are essential to normally functioning organs. Thus, a comprehensive, targeted
approach to treatment of AKI that includes focused supplementation and removal should
be explored as an alternative or in addition to RRT.

5 Concluding Remarks and Limitations
Overall, this study demonstrates that AKI is associated with dramatic changes in heart,
lung, and liver metabolism, ATP depletion, and oxidative stress, with the most dramatic
effects in the heart. While the complications of AKI are traditionally considered to be
due to the accumulation of metabolites and treated via renal replacement therapy, this data
demonstrate that numerous essential metabolites were not just increased but also depleted
after AKI which likely contribute to the deleterious effects of AKI on distant organs. Meth-
ods to improve energy metabolism in these organs after AKI may have potential to improve
outcomes and further studies should be performed. Furthermore, this data addresses and
visualizes the complexity of AKI and suggest that more precise tools of mediation and
treatment will be necessary to optimize patient outcomes. Finally, the plasma PLS-DA
classifier model demonstrates the potential to assist diagnose AKI at time points as early
as 4 hours.

Limitations: Metabolite levels reported reflect steady state levels that are the cumu-
lative effect of numerous interconnected pathways. Definitive assessment of substrate
sources for key metabolites and implications for metabolic pathways disrupted require
additional focused experimentation. Accurate metabolite identity involves the use of ap-
propriate standards, and may be subject to error. Raw data are available for review upon
request.
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tivity profiling (papi): from the metabolite profile to the metabolic pathway activity.
Bioinformatics, 26(23):2969–76, Dec 2010.

[31] Arnald Alonso, Sara Marsal, and Antonio Julià. Analytical methods in untargeted
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6 Supplementary Material

6.1 HCA

Figure 4: Heart HCA of ANOVA significant metabolites (Pearson (n-1) correlation metric with average
linkage), red is row maximum (metabolite concentration), white is row medium, blue is row minimum
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Figure 5: Lung HCA of ANOVA significant metabolites (Pearson (n-1) correlation metric with average
linkage), red is row maximum (metabolite concentration), white is row medium, blue is row minimum
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Figure 6: Liver HCA of ANOVA significant metabolites (Pearson (n-1) correlation metric with average
linkage), red is row maximum (metabolite concentration), white is row medium, blue is row minimum
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Figure 7: Kidney HCA of ANOVA significant metabolites (Pearson (n-1) correlation metric with average
linkage), red is row maximum (metabolite concentration), white is row medium, blue is row minimum
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Figure 8: Plasma HCA of ANOVA significant metabolites (Pearson (n-1) correlation metric with average
linkage), red is row maximum (metabolite concentration), white is row medium, blue is row minimum
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6.2 PCA

(a) Scores PC1 vs PC2 (b) Scores PC1 vs PC3 (c) Scores PC2 vs PC3

(d) Biplot PC1 vs PC2 (e) Biplot PC1 vs PC3 (f) Biplot PC2 vs PC3

Figure 9: Heart PCA Scores and Biplots, PCA utilizing SVD, the first three components were graphed
and respectively account for 18.5%, 12.4%, and 9.9% of the variance in the data. Biplots show the top 25
metabolites with the highest sum of squared cosine values between the two components graphed
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(a) Scores PC1 vs PC2 (b) Scores PC1 vs PC3 (c) Scores PC2 vs PC3

(d) Biplot PC1 vs PC2 (e) Biplot PC1 vs PC3 (f) Biplot PC2 vs PC3

Figure 10: Lung PCA Scores and Biplots, PCA utilizing SVD, the first three components were graphed
and respectively account for 45.1%, 11.7%, and 9.0% of the variance in the data. Biplots show the top 25
metabolites with the highest sum of squared cosine values between the two components graphed
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(a) Scores PC1 vs PC2 (b) Scores PC1 vs PC3 (c) Scores PC2 vs PC3

(d) Biplot PC1 vs PC2 (e) Biplot PC1 vs PC3 (f) Biplot PC2 vs PC3

Figure 11: Liver PCA Scores and Biplots, PCA utilizing SVD, the first three components were graphed
and respectively account for 36.8%, 18.4%, and 8.0% of the variance in the data. Biplots show the top 25
metabolites with the highest sum of squared cosine values between the two components graphed
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(a) Scores PC1 vs PC2 (b) Scores PC1 vs PC3 (c) Scores PC2 vs PC3

(d) Biplot PC1 vs PC2 (e) Biplot PC1 vs PC3 (f) Biplot PC2 vs PC3

Figure 12: Kidney PCA Scores and Biplots, PCA utilizing SVD, the first three components were graphed
and respectively account for 22.8%, 15.8%, and 9.4% of the variance in the data. Biplots show the top 25
metabolites with the highest sum of squared cosine values between the two components graphed
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(a) Scores PC1 vs PC2 (b) Scores PC1 vs PC3 (c) Scores PC2 vs PC3

(d) Biplot PC1 vs PC2 (e) Biplot PC1 vs PC3 (f) Biplot PC2 vs PC3

Figure 13: Plasma PCA Scores and Biplots, PCA utilizing SVD, the first three components were graphed
and respectively account for 36.2%, 14.9%, and 9.8% of the variance in the data. Biplots show the top 25
metabolites with the highest sum of squared cosine values between the two components graphed
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6.3 Effect of AKI metabolites

4 Hours
Heart Lung Liver

Increased D-Ribose1 D-Ribose1 (S)(+)-Allantoin1

3-Sulfino-L-alanine1 L-Arabinose1 2’,3’-Cyclic CMP1

L-2-Aminoadipate1 Creatinine1 Creatinine1

(S)(+)-Allantoin2 (S)(+)-Allantoin2

Homocarnosine2

Decreased Glutamate1 2-Hydroxyglutarate/Citramalate3

Succinate1

Phosphoserine1

Thioredoxin disulfide1

Table 5: Metabolites that were increased or decreased due to the effect of AKI at 4 hours in the heart, lung,
or liver, 1: Sig2AKI, 2: IiAKI, 3: OppInAKI, 4: NoEfAKI
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24 Hours
Heart Lung Liver

Increased (S)(+)-Allantoin1 (S)(+)-Allantoin1 (S)(+)-Allantoin1

UMP1 5-6-Dihydrothymine1 2’,3’-Cyclic CMP1

D-Ribose1 4-Pyridoxate1 5-6-Dihydrothymine1

2-Oxoglutaramate1 D-Ribose1 D-Ribose1

Ascorbate1 Putrescine1 2-Hydroxyglutarate/Citramalate1

Pantothenate1 L-Arabinose1 3-Phosphonooxypyruvate1

cis-Zeatin1 Homocarnosine1 L-Citrulline1

L-2-Aminoadipate1 Phosphocreatine1 Putrescine1

Threonate1 Creatinine1 Spermidine1

5-Hydroxyisourate2 N6-Methyl-L-lysine1 L-Arabinose1

5-6-Dihydrothymine2 N-Amidino-L-aspartate1 5-Guanidino-2-oxopentanoate1

3-Oxalomalate2 Phosphocreatine1

D-Glucose3 Creatine1

N6-Methyl-L-lysine3 Creatinine1

N-Acetyl-L-citrulline1

Pantothenate1

Methylenediurea1

L-Homocitrulline1

Ethanolamine phosphate2

Decreased Aspartate1 Glutamate1 Serine1

Glycine1 Hypotaurine1 D-Glucose 6-phosphate1

Lysine1 L-Carnitine1 D-Glyceraldehyde 3-phosphate/Glycerone phosphate1

Tyrosine1 O-Propanoylcarnitine1 2-3-Bisphosphoglycerate1

Adenine1 Thioredoxin disulfide1 Malate1

Adenosine1 2-Oxo-7-methylthioheptanoic acid1 6-Phospho-D-gluconate1

Glutathione1 D-Glucono-1-5-lactone 6-phosphate1

Peptide tryptophan1 5-Phospho-alpha-D-ribose 1-diphosphate1

Pyridoxamine1 Glutathione1

2-Oxo-7-methylthioheptanoic acid1 S-Adenosyl-L-methionine1

Alanine2 alpha-D-Glucosamine 1-phosphate1

Glutamate2 3D-(3-5/4)-Trihydroxycyclohexane-1-2-dione1

Phosphoserine2 Glycerol 3-phosphate1

Thioredoxin disulfide2 sn-glycero-3-Phosphoethanolamine1

Histidine4 2-Methyleneglutarate1

L-Citrulline4 3-Oxalomalate1

trans-4-Hydroxy-L-proline4 cis-p-Coumarate1

Serotonin4 N-Acyl-D-mannosaminolactone1

Sodium glucuronate1

D-Ribitol 5-phosphate1

Table 6: Metabolites that were increased or decreased due to the effect of AKI at 24 hours in the heart, lung,
or liver, 1: Sig2AKI, 2: IiAKI, 3: OppInAKI, 4: NoEfAKI
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7 Days
Heart Lung Liver

Increased (S)(+)-Allantoin1 (S)(+)-Allantoin1 Putrescine1

D-Glucose1 Phosphocreatine1

2-Oxoglutaramate1 N6-Methyl-L-lysine1

Ornithine1 N-Amidino-L-aspartate1

L-Citrulline1 Hypotaurine4

N-Glycoloyl-neuraminate1

Serotonin1

cis-Zeatin1

4-Aminobenzoate1

N6-Methyl-L-lysine1

Decreased Alanine1 D-Ribose4

Cytidine1 L-Arabinose4

Adenosine1

Table 7: Metabolites that were increased or decreased due to the effect of AKI at 7 days in the heart, lung,
or liver, 1: Sig2AKI, 2: IiAKI, 3: OppInAKI, 4: NoEfAKI
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Kidney
4 Hour 24 Hour 7 Day

Increase UMP1 Histidine1 Urate1

Pyridoxal1 Pyridoxal1 Pyridoxal1

Maltose1 Maltose1 Maltose1

D-Ribose1 D-Ribose1 D-Ribose1

D-Arabitol1 Ornithine1 D-Arabitol1

Ornithine1 L-Citrulline1 Ornithine1

N-Acetylneuraminate1 N-Acetylneuraminate1 L-Citrulline1

N-Glycoloyl-neuraminate1 L-Arabinose1 Putrescine1

L-Arabinose1 Phosphocreatine1 N-Acetylneuraminate1

Homocarnosine1 Creatine1 L-Arabinose1

Carnosine1 4-Acetamidobutanoate1 Creatinine1

Creatinine1 N-Acetyl-L-citrulline1 4-Acetamidobutanoate1

4-Acetamidobutanoate1 Triacanthine1 N-Acetyl-L-citrulline1

Serotonin1 3-Oxalomalate1 Dopamine1

Triacanthine1 Oxalosuccinate1 Triacanthine1

N6-Methyl-L-lysine1 N-Carbamyl-L-glutamate1 N6-Methyl-L-lysine1

D-glucono-1,5-lactone1 L-Homocitrulline1 Ferric gluconate1

Ferric gluconate1 Homomethionine1 D-Ribitol 5-phosphate1

N-Amidino-L-aspartate1 N-Glycoloyl-neuraminate2 Pyridoxamine1

N-Carbamyl-L-glutamate1 Methylenediurea2 N-Carbamyl-L-glutamate1

L-Homocitrulline1 Putrescine3 L-Homocitrulline1

L-Citrulline3 N6-Methyl-L-lysine3 N-Glycoloyl-neuraminate3

5-Guanidino-2-oxopentanoate3 N-Amidino-L-aspartate3

N-Acetyl-L-citrulline3 Choline4

Leucine4 Hydroxyacetone phosphate4

6-Aminohexanoate4

Table 8: Metabolites that were increased due to the effect of AKI at all time points in the kidney 1: Sig2AKI,
2: IiAKI, 3: OppInAKI, 4: NoEfAKI
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Kidney
4 Hour 24 Hour 7 Day

Decrease Cysteine1 Cysteine1 Cystine1

Glutamate1 Glutamate1 Adenine1

Glycine1 Glycine1 Thymidine1

Adenine1 Valine1 IMP1

Cytidine1 Cystine1 NAD+1

Inosine1 AMP1 Pyruvate1

Hypoxanthine1 Adenosine1 Succinate1

5-6-Dihydrothymine1 Adenine1 gamma-Glutamyl-gamma-aminobutyrate1

NAD+1 GMP1 L-gamma-Glutamyl-L-hypoglycin1

Sedoheptulose 1-phosphate1 Guanine1 Spermine1

Glutathione1 Inosine1 Guanidinoacetate1

5-Oxoproline1 Hypoxanthine1 L-Adrenaline1

gamma-L-Glutamyl-L-cysteine1 Nicotinamide1 Ectoine1

gamma-L-Glutamyl-D-alanine1 NAD+1 Glycerol 3-phosphate1

(5-L-Glutamyl)-L-glutamine1 Pyruvate1 L-Carnitine1

L-Homocysteine1 alpha-D-Ribose 1-phosphate1 Peptide tryptophan1

N-Succinyl-L-citrulline1 gamma-L-Glutamyl-L-cysteine1 Poly-gamma-D-glutamate1

Guanidinoacetate1 5-L-Glutamyl-taurine1

Ectoine1 L-Homocysteine1

Ethanolamine phosphate1 Guanidinoacetate1

Choline1 Taurine1

L-Carnitine1 Hypotaurine1

1-Hydroxy-2-aminoethylphosphonate1 Anthranilate1

3-Oxalomalate1 g-Oxalo-crotonate1

S-Formylglutathione1 Ectoine1

Shikimate 3-phosphate1 Glycerol 3-phosphate1

Poly-gamma-D-glutamate1 Ethanolamine phosphate1

Hydroxyacetone phosphate1 L-Carnitine1

IMP2 1-Hydroxy-2-aminoethylphosphonate1

Anthranilate2 4-Aminobenzoate1

4-Aminobenzoate2 Peptide tryptophan1

gamma-Glutamyl-gamma-aminobutyrate3 cis-p-Coumarate1

Creatine3 Poly-gamma-D-glutamate1

Methylenediurea3 Sedoheptulose 1-phosphate2

Dopamine4

Table 9: Metabolites that were decreased due to the effect of AKI at all time points in the kidney 1: Sig2AKI,
2: IiAKI, 3: OppInAKI, 4: NoEfAKI
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Plasma
4 Hour 24 Hour 7 Day

Increase Aspartate1 Histidine1 Hypoxanthine1

Histidine1 Cystine1 Thymine1

Tryptophan1 Hypoxanthine1 Pyridoxal1

Cystine1 Xanthine1 D-Ribose1

Xanthine1 (S)(+)-Allantoin1 D-Rhamnose1

Phosphate1 Pyridoxal1 2-Oxoglutaramate1

2-Oxoglutaramate1 4-Pyridoxate1 (5-L-Glutamyl)-peptide1

6-Phospho-D-gluconate1 Phosphate1 Creatinine1

(5-L-Glutamyl)-peptide1 D-Ribose1 N-Acetyl-L-citrulline1

5-Guanidino-2-oxopentanoate1 D-Rhamnose1 Dopamine1

Creatinine1 2-Oxoglutaramate1 4-Aminobenzoate1

Taurine1 Fumarate1 2-Deoxy-alpha-D-glucoside1

3-Sulfino-L-alanine1 Ascorbate1 N6-Methyl-L-lysine1

2-Deoxy-alpha-D-glucoside1 (5-L-Glutamyl)-peptide1 Dethiobiotin1

N-Acyl-D-aspartate1 Dimethylglycine1 Threonate1

beta-D-Glucuronoside1 L-Citrulline1 5-6-Dihydrothymine2

L-Homocitrulline1 N-Glycoloyl-neuraminate1 Tripeptide3

Hypoxanthine2 5-Guanidino-2-oxopentanoate1 L-Homocitrulline3

(S)(+)-Allantoin2 Phosphocreatine1

Nicotinamide2 Creatine1

N-Glycoloyl-neuraminate2 Creatinine1

Threonate2 4-Acetamidobutanoate1

D-Ribose3 N-Acetyl-L-citrulline1

D-Rhamnose3 Taurine1

Dethiobiotin3 3-Sulfino-L-alanine1

Tripeptide3 Methylenediurea1

Triacanthine4 3-Oxalomalate1

Dethiobiotin1

Threonate1

N-Acyl-D-aspartate1

beta-D-Glucuronoside1

L-Homocitrulline1

Homomethionine1

5-Oxoproline4

Table 10: Metabolites that were increased due to the effect of AKI at all time points in the plasma 1:
Sig2AKI, 2: IiAKI, 3: OppInAKI, 4: NoEfAKI
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Plasma
4 Hour 24 Hour 7 Day

Decrease Malate1 Alanine1 Valine1

L-Methionine S-oxide1 Arginine1 Methionine2

O-Propanoylcarnitine1 Cysteine1 5-Guanidino-2-oxopentanoate4

Arginine2 Glycine1 N-Acetylornithine4

Cytidine3 Lysine1

L-Citrulline4 Methionine1

4-Acetamidobutanoate4 Phenylalanine1

Dopamine4 Proline1

4-Aminobenzoate4 Tyrosine1

Valine1

Guanine1

Cytidine1

D-Glucose1

Lactate1

Succinate1

S-Glutathionyl-L-cysteine1

gamma-L-Glutamyl-D-alanine1

Indolepyruvate1

L-Adrenaline1

L-Carnitine1

O-Propanoylcarnitine1

2-Methyleneglutarate1

cis-p-Coumarate1

N-Acyl-D-mannosaminolactone1

Sodium glucuronate1

Pyridoxamine1

2-Oxo-7-methylthioheptanoic acid1

Malate2

Phosphoserine2

Serine3

(5-L-Glutamyl)-L-glutamine3

Peptide tryptophan3

N6-Methyl-L-lysine4

Table 11: Metabolites that were decreased due to the effect of AKI at all time points in the plasma 1:
Sig2AKI, 2: IiAKI, 3: OppInAKI, 4: NoEfAKI

48



6.4 PAPi HCA

Figure 14: Heart HCA of PAPi (pearson (n-1) correlation metric with average linkage), red is activity score
(AS)> 0 (not enriched), white is AS = 0, blue is AS < 0 (enriched)
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Figure 15: Lung HCA of PAPi (pearson (n-1) correlation metric with average linkage), red is activity score
(AS)> 0 (not enriched), white is AS = 0, blue is AS < 0 (enriched)
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Figure 16: Liver HCA of PAPi (pearson (n-1) correlation metric with average linkage), red is activity score
(AS)> 0 (not enriched), white is AS = 0, blue is AS < 0 (enriched)
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Figure 17: Kidney HCA of PAPi (pearson (n-1) correlation metric with average linkage), red is activity score
(AS)> 0, white is AS = 0, blue is AS < 0
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Figure 18: Plasma HCA of PAPi (pearson (n-1) correlation metric with average linkage), red is activity score
(AS)> 0, white is AS = 0, blue is AS < 0
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6.5 Enriched pathways significant to AKI

4 Hours
Heart Lung Liver Kidney Plasma
Butanoate metabolism1 Nitrogen metabolism1 Primary bile acid biosynthesis1

Alanine, aspartate and glutamate metabolism1 Primary bile acid biosynthesis1 Taurine and hypotaurine metabolism1

Histidine metabolism1 Vitamin B6 metabolism1 Pentose phosphate pathway1

Butanoate metabolism1 Histidine metabolism1

D-Glutamine and D-glutamate metabolism1 Alanine, aspartate and glutamate metabolism2

Porphyrin and chlorophyll metabolism1 Purine metabolism2

Tryptophan metabolism1 Cysteine and methionine metabolism2

Methane metabolism1 Amino sugar and nucleotide sugar metabolism2

Glutathione metabolism1 Pyrimidine metabolism2

Cyanoamino acid metabolism1 Aminoacyl-tRNA biosynthesis2

Alanine, aspartate and glutamate metabolism1 Arginine and proline metabolism2

Pentose and glucuronate interconversions1

Glycine, serine and threonine metabolism1

Glycerophospholipid metabolism1

Purine metabolism1

Cysteine and methionine metabolism1

Aminoacyl-tRNA biosynthesis1

Taurine and hypotaurine metabolism1

Pentose phosphate pathway1

Sphingolipid metabolism1

Pyrimidine metabolism1

Pantothenate and CoA biosynthesis1

Arginine and proline metabolism2

Histidine metabolism2

Table 12: Pathways that were enriched due to the effect of AKI at 4 hours in the heart, lung, liver, kidney, or
plasma, 1: Sig2AKI, 2: IiAKI, 3: OppInAKI, 4: NoEfAKI

24 Hours
Heart Lung Liver Kidney Plasma
Primary bile acid biosynthesis1 Pentose and glucuronate interconversions1 Pentose and glucuronate interconversions1 Primary bile acid biosynthesis1 Primary bile acid biosynthesis1

Cyanoamino acid metabolism1 Glycine, serine and threonine metabolism1 Nitrogen metabolism1 Nitrogen metabolism1

Phenylalanine metabolism1 Glycerophospholipid metabolism1 Vitamin B6 metabolism1 Phenylalanine metabolism1

Lysine degradation1 Purine metabolism1 Butanoate metabolism1 Vitamin B6 metabolism1

Phenylalanine, tyrosine and tryptophan biosynthesis1 Pyrimidine metabolism1 D-Glutamine and D-glutamate metabolism1 Starch and sucrose metabolism1

Butanoate metabolism1 Pantothenate and CoA biosynthesis1 Porphyrin and chlorophyll metabolism1 Lysine degradation1

Purine metabolism1 Arginine and proline metabolism1 Valine, leucine and isoleucine biosynthesis1 Amino sugar and nucleotide sugar metabolism1

Glycine, serine and threonine metabolism1 Pentose phosphate pathway1 Glutathione metabolism1 Porphyrin and chlorophyll metabolism1

Vitamin B6 metabolism1 Glutathione metabolism1 Cyanoamino acid metabolism1 Valine, leucine and isoleucine degradation1

Lysine biosynthesis1 Sphingolipid metabolism2 Pentose and glucuronate interconversions1 Methane metabolism1

Pantothenate and CoA biosynthesis1 Glycine, serine and threonine metabolism1 Valine, leucine and isoleucine biosynthesis1

beta-Alanine metabolism1 Glycerophospholipid metabolism1 Glutathione metabolism1

Porphyrin and chlorophyll metabolism1 Purine metabolism1 Cyanoamino acid metabolism1

Glutathione metabolism1 Histidine metabolism1 Alanine, aspartate and glutamate metabolism1

Methane metabolism1 Cysteine and methionine metabolism1 Glycine, serine and threonine metabolism1

Pentose phosphate pathway1 Aminoacyl-tRNA biosynthesis1 Phenylalanine, tyrosine and tryptophan biosynthesis1

Tyrosine metabolism1 Taurine and hypotaurine metabolism1 Purine metabolism1

Nitrogen metabolism2 Pentose phosphate pathway1 Histidine metabolism1

Alanine, aspartate and glutamate metabolism2 Citrate cycle (TCA cycle)1 Cysteine and methionine metabolism1

Histidine metabolism2 Nicotinate and nicotinamide metabolism1 Aminoacyl-tRNA biosynthesis1

D-Glutamine and D-glutamate metabolism2 Pantothenate and CoA biosynthesis1 Glycolysis or Gluconeogenesis1

Pyrimidine metabolism2 Arginine and proline metabolism1 Taurine and hypotaurine metabolism1

Aminoacyl-tRNA biosynthesis2 Pentose phosphate pathway1

Taurine and hypotaurine metabolism2 Tyrosine metabolism1

Arginine and proline metabolism2 Citrate cycle (TCA cycle)1

Pyrimidine metabolism1

Galactose metabolism1

Pantothenate and CoA biosynthesis1

Arginine and proline metabolism1

Lysine biosynthesis1

Table 13: Pathways that were enriched due to the effect of AKI at 24 hours in the heart, lung, liver, kidney,
or plasma, 1: Sig2AKI, 2: IiAKI, 3: OppInAKI, 4: NoEfAKI
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7 Days
Heart Lung Liver Kidney Plasma

Pentose and glucuronate interconversions1 Cyanoamino acid metabolism1 Vitamin B6 metabolism1

Pentose and glucuronate interconversions1 Pantothenate and CoA biosynthesis1

Glycine, serine and threonine metabolism1 Cysteine and methionine metabolism1

Butanoate metabolism1

Glycerophospholipid metabolism1

Cysteine and methionine metabolism1

Nicotinate and nicotinamide metabolism1

Vitamin B6 metabolism1

Pantothenate and CoA biosynthesis1

Glutathione metabolism1

Arginine and proline metabolism1

Starch and sucrose metabolism1

Valine, leucine and isoleucine biosynthesis1

beta-Alanine metabolism1

Tyrosine metabolism1

Table 14: Pathways that were enriched due to the effect of AKI at 7 days in the heart, lung, liver, kidney, or
plasma, 1: Sig2AKI, 2: IiAKI, 3: OppInAKI, 4: NoEfAKI
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6.6 Box and whisker plots
6.6.1 Amino acids in the heart

(a) Alanine (b) Glutamate (c) Aspartate

(d) Tyrosine (e) Glycine (f) Histidine

Figure 19: Box and whisker plots of glucogenic amino acids at all time points in the heart
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6.6.2 Amino acids in the lung and liver

Figure 20: Lung glutamate levels Figure 21: Liver serine levels

6.6.3 Glycolysis/TCA Cycle/Pentose Phosphate Pathway

Figure 22: Heart glucose levels Figure 23: Lung glucose levels Figure 24: Liver glucose levels
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Figure 25: Heart ribose levels Figure 26: Lung ribose levels Figure 27: Liver ribose levels

Figure 28: Heart pantothenate lev-
els

Figure 29: Lung pantothenate lev-
els

Figure 30: Liver pantothenate lev-
els

Figure 31: Heart 2-
oxoglutaramate levels

Figure 32: Lung 2-oxoglutaramate
levels

Figure 33: Liver 2-oxoglutaramate
levels
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Figure 34: Heart 3-oxalomalate
levels

Figure 35: Lung 3-oxalomalate
levels

Figure 36: Liver 3-oxalomalate
levels

Figure 37: Lung L-arabinose levels Figure 38: Liver L-arabinose levels
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6.6.4 Purine and pyrimidine metabolism

Figure 39: Heart adenine levels Figure 40: Lung adenine levels Figure 41: Liver adenine levels

Figure 42: Heart adenosine levels Figure 43: Lung adenosine levels Figure 44: Liver adenosine levels
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Figure 45: Heart 5-
hydroxyisourate levels

Figure 46: Lung 5-
hydroxyisourate levels

Figure 47: Liver 5-
hydroxyisourate levels

Figure 48: Heart 5-6-
dihydrothymine levels

Figure 49: Lung 5-6-
dihydrothymine levels

Figure 50: Liver 5-6-
dihydrothymine levels
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6.6.5 Oxidative stress

Figure 51: Heart S-allantoin levels Figure 52: Lung S-allantoin levels Figure 53: Liver S-allantoin levels

Figure 54: Heart glutathione levels Figure 55: Lung glutathione levels Figure 56: Liver glutathione levels

Figure 57: Heart ascorbate levels Figure 58: Lung ascorbate levels Figure 59: Liver ascorbate levels
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Figure 60: Heart L-2-
aminoadipate levels

Figure 61: Lung L-2-
aminoadipate levels

Figure 62: Liver L-2-
aminoadipate levels

Figure 63: Heart thioredoxin
disulfide levels

Figure 64: Lung thioredoxin disul-
fide levels

Figure 65: Liver thioredoxin disul-
fide levels
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6.7 Metabolites with the highest cosine similarity metrics in PCA

Heart
PC1PC2 PC1PC3 PC2PC3
Pantothenate (S)(+)-Allantoin NAD+
(S)(+)-Allantoin Pantothenate Malate
L-2-Aminoadipate L-2-Aminoadipate D-Erythrose 4-phosphate
cis-Zeatin cis-Zeatin D-Glucono-1-5-lactone 6-phosphate
D-Glucose D-Ribose ADP
D-Ribose Aspartate Fumarate
D-Glucono-1-5-lactone 6-phosphate Glutamate Nicotinamide
D-Erythrose 4-phosphate D-Glucose 5-Oxoproline
Glutamate 5-6-Dihydrothymine Valine
Aspartate Phosphoserine Phosphocreatine
NAD+ Threonate D-Glucose 6-phosphate
Threonate Glutathione D-Ribitol 5-phosphate
5-6-Dihydrothymine Malate Arginine
Phosphoserine Fumarate Cytidine
Nicotinamide 5-Hydroxyisourate Ethanolamine phosphate
D-Glucose 6-phosphate Dethiobiotin AMP
Phosphocreatine 6-Phospho-D-gluconate N-Glycoloyl-neuraminate
Valine Peptide tryptophan Glutathione disulfide
Pyridoxamine Thioredoxin disulfide Lactate
Thioredoxin disulfide 3-Oxalomalate Inosine
Glutathione NAD+ Hypoxanthine
Cytidine N-Carbamyl-L-glutamate Phosphate
2-Hydroxyglutarate/Citramalate 2-Oxoglutaramate Leucine
Peptide tryptophan ADP Dethiobiotin
Lysine 2-Hydroxyglutarate/Citramalate L-Carnitine

Table 15: Top 25 metabolites with the largest sum of squared cosines between the two principal components
in the heart
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Lung
PC1PC2 PC1PC3 PC2PC3
Proline Glycine (S)(+)-Allantoin
Malate Proline D-Ribose
Glycine Malate L-Arabinose
Phosphoserine Hydroxyacetone phosphate N-Amidino-L-aspartate
Alanine Taurine Creatinine
Hydroxyacetone phosphate Serine Thioredoxin disulfide
Methylenediurea Alanine Putrescine
Cytidine Cytidine 2-Oxo-7-methylthioheptanoic acid
Serine Hypoxanthine Ethanolamine phosphate
Hypoxanthine N-Acetylneuraminate N6-Methyl-L-lysine
N-Acetylneuraminate D-Glyceraldehyde 3-phosphate/Glycerone phosphate 4-Pyridoxate
cis-p-Coumarate Pyridoxamine 2-3-Bisphosphoglycerate
D-Glyceraldehyde 3-phosphate/Glycerone phosphate Threonine Pyridoxamine
Threonine 5-Oxoproline Aspartate
Methionine gamma-L-Glutamyl-D-alanine O-Propanoylcarnitine
Glutamate Methionine L-2-Aminoadipate
gamma-L-Glutamyl-D-alanine Phosphoserine D-Glucose
Creatine Lysine Homocarnosine
5-Oxoproline Methylenediurea 2-Hydroxyglutarate/Citramalate
Tyrosine trans-4-Hydroxy-L-proline Phosphocreatine
trans-4-Hydroxy-L-proline 3-Sulfino-L-alanine Maleamate
Taurine L-Cysteate 2/3-Phospho-D-glycerate
(S)(+)-Allantoin S-Adenosyl-L-homocysteine Ascorbate
3-Sulfino-L-alanine cis-p-Coumarate Lysine
S-Adenosyl-L-homocysteine Valine Glutamate

Table 16: Top 25 metabolites with the largest sum of squared cosines between the two principal components
in the lung
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Liver
PC1PC2 PC1PC3 PC2PC3
Sodium glucuronate Oxaloacetate 2’,3’-Cyclic CMP
2’,3’-Cyclic CMP Proline ADP
Oxaloacetate 5-Hydroxyisourate L-Arabinose
Proline Nicotinamide D-Ribose
alpha-D-Glucosamine 1-phosphate Glutathione Phosphocreatine
D-Ribitol 5-phosphate 5-Oxoproline 5-6-Dihydrothymine
Nicotinamide Glutamine L-Homocitrulline
6-Phospho-D-gluconate Mercaptopyruvate N-Acyl-D-mannosaminolactone
5-Hydroxyisourate Glycerol 3-phosphate 5-Guanidino-2-oxopentanoate
Glutathione O-Propanoylcarnitine L-Citrulline
3D-(3-5/4)-Trihydroxycyclohexane-1-2-dione 6-Phospho-D-gluconate Methylenediurea
Phosphocreatine Cys-Gly Creatine
5-Oxoproline Histidine Sodium glucuronate
O-Propanoylcarnitine Phenylalanine NAD+
Glutamine S-Acylglutathione D-Glyceraldehyde 3-phosphate/Glycerone phosphate
Glycerol 3-phosphate ADP Inosine
Histidine 3-Phospho-D-erythronate Creatinine
L-Cysteate cis-p-Coumarate D-Glucono-1-5-lactone 6-phosphate
Mercaptopyruvate 5-10-Methenyltetrahydrofolate D-Ribitol 5-phosphate
Cys-Gly NAD+ D-Glucose 6-phosphate
3-Sulfino-L-alanine Inosine 5-Phospho-alpha-D-ribose 1-diphosphate
5-Guanidino-2-oxopentanoate Methionine Pantothenate
S-Acylglutathione Phosphoserine Hypoxanthine
N-Acyl-D-mannosaminolactone Serine Threonate
cis-p-Coumarate Thymidine Pentose phosphates (isobars)

Table 17: Top 25 metabolites with the largest sum of squared cosines between the two principal components
in the liver
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Kidney
PC1PC2 PC1PC3 PC2PC3
Ectoine Glycine UDP-N-acetyl-D-glucosamine
Glycine Poly-gamma-D-glutamate Decanoic acid (caprate)
Poly-gamma-D-glutamate Ectoine UDP-glucose
gamma-L-Glutamyl-L-cysteine gamma-L-Glutamyl-L-cysteine Urate
4-Acetamidobutanoate Adenine Indole
L-Citrulline L-Homocysteine Picolinic acid
N-Amidino-L-aspartate N-Amidino-L-aspartate 2-Hydroxyglutarate/Citramalate
Pyridoxal NAD+ N-Acyl-D-aspartate
L-Homocysteine N-Glycoloyl-neuraminate Creatine
Adenine UDP-N-acetyl-D-glucosamine Xanthine
Decanoic acid (caprate) Hypoxanthine Methylenediurea
NAD+ Pyridoxal Tryptophan
Homomethionine Cysteine ADP-D-ribose
N-Carbamyl-L-glutamate Xanthine Phenylalanine
N-Glycoloyl-neuraminate L-Citrulline Dopamine
Cysteine Guanidinoacetate Dehydroascorbate
L-Homocitrulline N-Carbamyl-L-glutamate Proline
Guanidinoacetate UDP-glucose Diphosphate
Hypoxanthine 4-Acetamidobutanoate Thymidine
UDP-glucose L-Carnitine gamma-L-Glutamylputrescine
5-Oxoproline Decanoic acid (caprate) Serine
AMP Adenosine 3-Methyleneoxindole
2-Hydroxyglutarate/Citramalate Hydroxyacetone phosphate Threonine
Creatinine 5-L-Glutamyl-taurine Phosphate
L-Arabinose GMP Alanine

Table 18: Top 25 metabolites with the largest sum of squared cosines between the two principal components
in the kidney
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Plasma
PC1PC2 PC1PC3 PC2PC3
Creatinine Creatinine Threonine
(5-L-Glutamyl)-peptide (5-L-Glutamyl)-peptide Dehydroascorbate
Threonate Threonate Arginine
(S)(+)-Allantoin Hypoxanthine Oxaloacetate
Hypoxanthine (S)(+)-Allantoin 2-Oxoglutarate
Ascorbate Ascorbate Nicotinamide
5-Guanidino-2-oxopentanoate Dethiobiotin 5-Oxoproline
Serine Proline L-Methionine S-oxide
2/3-Phospho-D-glycerate D-Ribose Proline
beta-D-Glucuronoside 5-Guanidino-2-oxopentanoate Methionine
N-Acyl-D-aspartate Serine 2-Hydroxyglutarate/Citramalate
Dethiobiotin Arginine Citrate
L-Adrenaline beta-D-Glucuronoside Guanine
D-Ribose D-Rhamnose S-Glutathionyl-L-cysteine
Methionine L-Adrenaline 2/3-Phospho-D-glycerate
2-Oxoglutarate Alanine 2-Methyleneglutarate
2-Deoxy-alpha-D-glucoside N-Acyl-D-aspartate Pyruvate
Cystine O-Propanoylcarnitine Glutamine
Phosphate Nicotinamide Alanine
Oxaloacetate 2-Deoxy-alpha-D-glucoside D-Glucose
Methylenediurea Methylenediurea Serine
Guanine L-Homocitrulline D-Ribose 5-diphosphate
4-Pyridoxate 4-Pyridoxate Malate
D-Rhamnose Creatine N-Acetylornithine
Malate Homomethionine Thymine

Table 19: Top 25 metabolites with the largest sum of squared cosines between the two principal components
in the plasma
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6.8 Metabolites with the highest PLS-DA weights

Heart
24 Hr AKI 24 Hr Sham 4 Hr AKI 4 Hr Sham 7 Day AKI 7 Day Sham Normal
(S)(+)-Allantoin Methionine Methionine S-Glutathionyl-L-cysteine N-Glycoloyl-neuraminate N-Glycoloyl-neuraminate Taurine
Pantothenate Taurine N6-Methyl-L-lysine N6-Methyl-L-lysine Methionine 4-Aminobenzoate Methionine
L-2-Aminoadipate N6-Methyl-L-lysine 5-Oxoproline Methionine 5-Oxoproline S-Glutathionyl-L-cysteine Catechin
cis-Zeatin Histidine Ornithine Ethanolamine phosphate 4-Aminobenzoate Spermidine Thioredoxin disulfide
D-Ribose 5-Oxoproline Succinate N-Glycoloyl-neuraminate Serine Ethanolamine phosphate 4-Pyridoxate
Glutamate Catechin Arginine Succinate Valine Pyridoxamine N6-Methyl-L-lysine
Aspartate Guanidinoacetate Serine Aspartate Pyridoxamine Succinate Ornithine
Phosphoserine Ornithine S-Glutathionyl-L-cysteine Arginine Ethanolamine phosphate Valine Serotonin
5-6-Dihydrothymine Proline Aspartate Pyruvate L-Carnitine L-Carnitine Histidine
D-Glucose Lactate N-Glycoloyl-neuraminate Cystathionine Lysine Catechin Proline
Threonate L-Citrulline Spermidine Diphosphate D-Erythrose 4-phosphate Triacanthine Guanidinoacetate
Thioredoxin disulfide Serotonin Ethanolamine phosphate Ascorbate Phosphocreatine Pyridoxamine 5’-phosphate 5-Oxoproline
Glutathione Thioredoxin disulfide Serotonin Cys-Gly Pyridoxamine 5’-phosphate Glycerol 3-phosphate trans-4-Hydroxy-L-proline
Peptide tryptophan trans-4-Hydroxy-L-proline Histidine Nicotinamide D-Glucono-1-5-lactone 6-phosphate Pyruvate Succinate
3-Oxalomalate Alanine Pyruvate Spermidine Nicotinamide Nicotinamide Lactate
Tyrosine D-Glyceraldehyde 3-phosphate/Glycerone phosphate Tyrosine Ornithine Arginine Arginine Phosphoserine
Pyridoxamine 4-Pyridoxate 4-Aminobenzoate Oxalosuccinate L-Citrulline 2-Oxo-7-methylthioheptanoic acid D-Glyceraldehyde 3-phosphate/Glycerone phosphate
2-Oxoglutaramate 3-Sulfino-L-alanine L-Cysteate Phosphate NAD+ L-Adrenaline 3-Sulfino-L-alanine
2-Oxo-7-methylthioheptanoic acid Lysine Dethiobiotin O-Propanoylcarnitine 2-Oxo-7-methylthioheptanoic acid Aspartate Alanine
Lysine 4-Aminobenzoate NAD+ Tyrosine Histidine Ornithine L-Citrulline
3-Sulfino-L-alanine Succinate trans-4-Hydroxy-L-proline trans-4-Hydroxy-L-proline L-Octanoylcarnitine N-Amidino-L-aspartate D-Glucose
5-Hydroxyisourate Phosphoserine Cystathionine L-Cysteate L-Adrenaline 5-Oxoproline Sodium glucuronate
S-Glutathionyl-L-cysteine Pyridoxamine D-Glucose 1-O-Galloyl-beta-D-glucose Cytidine Phosphocreatine Glutamine
2-Hydroxyglutarate/Citramalate Dethiobiotin Oxalosuccinate Thioredoxin disulfide UMP (5-L-Glutamyl)-peptide D-Fructose 1-6-bisphosphate
6-Phospho-D-gluconate Valine Ascorbate 2-Oxo-7-methylthioheptanoic acid Tyrosine trans-4-Hydroxy-L-proline Dethiobiotin

Table 20: Top 25 metabolites with the largest weights for the PLS-DA model prediction for each sample
group in the heart

Lung
24 Hr AKI 24 Hr Sham 4 Hr AKI 4 Hr Sham 7 Day AKI 7 Day Sham Normal
(S)(+)-Allantoin O-Butanoylcarnitine Homocarnosine Homocarnosine 4-Aminobenzoate 4-Aminobenzoate O-Butanoylcarnitine
Putrescine Glutathione 2-Hydroxyglutarate/Citramalate 2-Hydroxyglutarate/Citramalate 5-6-Dihydrothymine 5-6-Dihydrothymine Homocarnosine
Thioredoxin disulfide Cys-Gly Ethanolamine phosphate Phosphocreatine 2-Hydroxyglutarate/Citramalate Homocarnosine Glutathione
Creatinine Homocarnosine 4-Aminobenzoate Maleamate Homocarnosine Ethanolamine phosphate Cysteine
D-Ribose Ethanolamine phosphate Tryptophan Ornithine 2-3-Bisphosphoglycerate 2-Hydroxyglutarate/Citramalate Cys-Gly
L-Arabinose Cysteine Maleamate L-Carnitine Ethanolamine phosphate N6-Methyl-L-lysine Ethanolamine phosphate
N-Amidino-L-aspartate Pentose phosphates (isobars) 2-3-Bisphosphoglycerate 4-Aminobenzoate 2/3-Phospho-D-glycerate Pantothenate 2-Hydroxyglutarate/Citramalate
Homocarnosine Uracil 2-Oxoglutaramate O-Propanoylcarnitine N6-Methyl-L-lysine Tryptophan Pentose phosphates (isobars)
N6-Methyl-L-lysine 2-Oxo-7-methylthioheptanoic acid 5-6-Dihydrothymine Succinate Pantothenate Thioredoxin disulfide Uracil
Phosphocreatine 2-Oxoglutarate L-Octanoylcarnitine L-Citrulline Aspartate Aspartate 2-3-Bisphosphoglycerate
4-Pyridoxate D-Fructose 6-phosphate Ornithine 2-3-Bisphosphoglycerate Maleamate (S)(+)-Allantoin 4-Aminobenzoate
O-Propanoylcarnitine L-Octanoylcarnitine O-Propanoylcarnitine 2-Oxoglutaramate D-Glucose 2-3-Bisphosphoglycerate 2-Oxoglutarate
D-Glucose 2-Hydroxyglutarate/Citramalate Phosphocreatine Ethanolamine phosphate 2-Oxo-7-methylthioheptanoic acid 4-Pyridoxate Maleamate
Glutamate Spermine 3-Phosphonooxypyruvate Adenosine Thioredoxin disulfide 2-Oxoglutaramate L-Octanoylcarnitine
Asparagine L-2-Aminoadipate Succinate Valine D-Glucose 6-phosphate D-Glucose 2-Oxo-7-methylthioheptanoic acid
2-Oxoglutaramate D-Glyceraldehyde 3-phosphate/Glycerone phosphate 2/3-Phospho-D-glycerate 3-Phosphonooxypyruvate Tryptophan D-Glucose 6-phosphate Ornithine
Aspartate Ornithine 2-Oxo-7-methylthioheptanoic acid (S)(+)-Allantoin Uracil 2-Oxo-7-methylthioheptanoic acid Tryptophan
L-Adrenaline O-Propanoylcarnitine Spermine L-Adrenaline (S)(+)-Allantoin Putrescine Spermine
L-2-Aminoadipate 2-3-Bisphosphoglycerate Adenosine 5-6-Dihydrothymine 2-Oxoglutaramate 2/3-Phospho-D-glycerate O-Propanoylcarnitine
L-Carnitine Tryptophan Peptide tryptophan N-Acetylneuraminate trans-4-Hydroxy-L-proline L-2-Aminoadipate 2-Oxoglutaramate
Ascorbate Maleamate Pyridoxamine Tryptophan AMP N-Carbamyl-L-glutamate D-Fructose 6-phosphate
Methylenediurea Serine O-Butanoylcarnitine O-Butanoylcarnitine Pyridoxamine L-Octanoylcarnitine L-2-Aminoadipate
Fumarate D-Ribitol 5-phosphate L-Citrulline N6-Methyl-L-lysine L-2-Aminoadipate O-Propanoylcarnitine D-Ribitol 5-phosphate
Creatine Xanthine 4-Pyridoxate Pyridoxamine L-Octanoylcarnitine AMP Serine
2-3-Bisphosphoglycerate Indole-3-acetaldehyde Pantothenate Glycine 3-Sulfino-L-alanine Fumarate D-Glucose 6-phosphate

Table 21: Top 25 metabolites with the largest weights for the PLS-DA model prediction for each sample
group in the lung

69



Liver
24 Hr AKI 24 Hr Sham 4 Hr AKI 4 Hr Sham 7 Day AKI 7 Day Sham Normal
2’,3’-Cyclic CMP 2/3-Phospho-D-glycerate Dopamine N-Glycoloyl-neuraminate 2/3-Phospho-D-glycerate 2/3-Phospho-D-glycerate Dopamine
Sodium glucuronate Aspartate N-Glycoloyl-neuraminate Lysine Dehydroascorbate Dehydroascorbate Dehydroascorbate
Phosphocreatine ADP Valine Pyridoxamine Pyridoxamine 2-Oxoglutarate Tryptophan
D-Ribitol 5-phosphate Dopamine Malate 2/3-Phospho-D-glycerate 4-Aminobenzoate L-Carnitine Pentose phosphates (isobars)
alpha-D-Glucosamine 1-phosphate Pyridoxamine Pyridoxamine 2-Oxo-7-methylthioheptanoic acid L-Carnitine 4-Aminobenzoate Glutathione
L-Arabinose Pentose phosphates (isobars) Lysine S-Glutathionyl-L-cysteine Lysine Lysine D-Fructose 1-6-bisphosphate
D-Ribose S-Glutathionyl-L-cysteine 2-Oxo-7-methylthioheptanoic acid Valine Inosine Hypoxanthine 5-Phospho-alpha-D-ribose 1-diphosphate
N-Acyl-D-mannosaminolactone N-Glycoloyl-neuraminate S-Glutathionyl-L-cysteine Malate 2-Oxo-7-methylthioheptanoic acid Threonate 2/3-Phospho-D-glycerate
L-Citrulline S-Acylglutathione 2/3-Phospho-D-glycerate S-Acylglutathione S-Acylglutathione S-Acylglutathione D-Fructose
Methylenediurea Dehydroascorbate Aspartate Cystine Spermidine Inosine Hypotaurine
3D-(3-5/4)-Trihydroxycyclohexane-1-2-dione 3-Oxalomalate Cystine Dopamine UMP N6-Methyl-L-lysine Cys-Gly
Creatine Tryptophan Asparagine 2-Oxoglutarate Tripeptide Pyridoxamine Tripeptide
5-Guanidino-2-oxopentanoate NAD+ ADP Aspartate N6-Methyl-L-lysine AMP Malate
Creatinine D-Glucono-1-5-lactone 6-phosphate Hypotaurine Hypoxanthine ADP O-Propanoylcarnitine Glutamate
5-6-Dihydrothymine Lysine cis-p-Coumarate Threonate Aspartate Diphosphate D-Ribitol 5-phosphate
L-Homocitrulline S-Adenosyl-L-methionine S-Acylglutathione Asparagine Hypoxanthine Tripeptide Asparagine
N-Glycoloyl-neuraminate 2-Oxo-7-methylthioheptanoic acid Glutamate Dimethylglycine Threonate Xanthine L-Carnitine
6-Phospho-D-gluconate 3-Phosphonooxypyruvate trans-4-Hydroxy-L-proline L-2-Aminoadipate D-Glucono-1-5-lactone 6-phosphate 6-Phospho-D-gluconate Aspartate
Pantothenate S-Adenosyl-L-homocysteine Tyrosine cis-p-Coumarate Diphosphate 2-Oxo-7-methylthioheptanoic acid Cysteine
(S)(+)-Allantoin 2-3-Bisphosphoglycerate Cytidine Inosine Succinyl sulfathiazole S-Glutathionyl-L-cysteine ADP
3-Phosphonooxypyruvate Succinyl sulfathiazole 3-Oxalomalate Triacanthine 2-Oxoglutarate L-2-Aminoadipate Valine
5-Phospho-alpha-D-ribose 1-diphosphate Inosine 2-Oxoglutarate Hypotaurine Pentose phosphates (isobars) Spermidine N-Acetyl-L-citrulline
Glutathione Malate Dimethylglycine Tyrosine S-Glutathionyl-L-cysteine S-Adenosyl-L-homocysteine Methionine
D-Glucose 6-phosphate UMP Fumarate Dehydroascorbate N-Glycoloyl-neuraminate 5-Guanidino-2-oxopentanoate Uracil
N-Acetyl-L-citrulline Fumarate Hypoxanthine 3-Oxalomalate 3-Phosphonooxypyruvate Triacanthine Adenosine

Table 22: Top 25 metabolites with the largest weights for the PLS-DA model prediction for each sample
group in the liver

Kidney
24 Hr AKI 24 Hr Sham 4 Hr AKI 4 Hr Sham 7 Day AKI 7 Day Sham Normal
3-Oxalomalate Sorbitol Homocarnosine L-gamma-Glutamyl-L-hypoglycin Asparagine L-gamma-Glutamyl-L-hypoglycin L-gamma-Glutamyl-L-hypoglycin
5-Hydroxyisourate N-Glycoloyl-neuraminate Carnosine Creatine Creatine Creatine Succinate
Carnosine L-gamma-Glutamyl-L-hypoglycin 3-Oxalomalate L-Adrenaline Methylenediurea Methylenediurea L-Adrenaline
Homocarnosine 6-Phospho-D-gluconate Asparagine Methylenediurea Homocarnosine L-Adrenaline Creatine
5-6-Dihydrothymine 2-Oxoglutaramate 5-Hydroxyisourate Succinate Carnosine Succinate Hydroxyacetone phosphate
(5-L-Glutamyl)-L-glutamine Serine 5-6-Dihydrothymine Asparagine Dopamine Asparagine 5-Guanidino-2-oxopentanoate
N-Succinyl-L-citrulline UDP-N-acetyl-D-glucosamine Taurine Sorbitol Anthranilate Sorbitol L-Carnitine
Asparagine gamma-Glutamyl-gamma-aminobutyrate Methylenediurea Peptide tryptophan 4-Aminobenzoate gamma-Glutamyl-gamma-aminobutyrate IMP
Methylenediurea Alanine Creatine gamma-Glutamyl-gamma-aminobutyrate D-Ribitol 5-phosphate Leucine Methylenediurea
N-Amidino-L-aspartate gamma-L-Glutamyl-D-alanine 2-Methyleneglutarate Leucine Pantothenate 6-Aminohexanoate Peptide tryptophan
Creatine Succinate (5-L-Glutamyl)-L-glutamine 6-Aminohexanoate Thymidine Phenylalanine Shikimate 3-phosphate
5-Guanidino-2-oxopentanoate Valine N-Succinyl-L-citrulline N-Glycoloyl-neuraminate NAD+ N-Glycoloyl-neuraminate N-Amidino-L-aspartate
Taurine butanoyl-l-carnitine 5-Guanidino-2-oxopentanoate Serine Histidine Hydroxyacetone phosphate 2-Deoxy-alpha-D-glucoside
Phosphocreatine Guanine Dopamine Phenylalanine Maltose Peptide tryptophan Citrate
N-Carbamyl-L-glutamate Lactate Glutamine Hydroxyacetone phosphate N-Acetylornithine gamma-L-Glutamyl-D-alanine 2-Dehydro-3-deoxy-D-glucarate
Cytidine Poly-gamma-D-glutamate Cytidine Alanine Phosphoserine Serine Guanidinoacetate
N-Acetylneuraminate propionyl-carnitine 2-Deoxy-alpha-D-glucoside gamma-L-Glutamyl-D-alanine Urate Guanine gamma-L-Glutamyl-L-cysteine
Homomethionine Creatine Pantothenate D-Rhamnose L-gamma-Glutamyl-L-hypoglycin N-Amidino-L-aspartate Glycerone sulfate
2-Deoxy-alpha-D-glucoside Guanosine S-Formylglutathione Thymidine Acetylcholine Alanine Homomethionine
Hydroxyacetone phosphate Sedoheptulose 1-phosphate D-Glucose 6-phosphate 6-Phospho-D-gluconate Aspartate Aspartate L-Homocysteine
2-Methyleneglutarate Dimethylglycine Phosphocreatine Guanine butanoyl-l-carnitine propionyl-carnitine gamma-L-Glutamyl-D-alanine
Shikimate 3-phosphate Peptide tryptophan Spermidine Decanoic acid (caprate) Inosine 6-Phospho-D-gluconate NAD+
Glutamine D-Rhamnose S-Acylglutathione Shikimate 3-phosphate Taurine butanoyl-l-carnitine Ectoine
S-Formylglutathione Methylenediurea Hydroxyacetone phosphate Aspartate Cys-Gly Dimethylglycine 5-Oxoproline
D-glucono-1,5-lactone Leucine UMP propionyl-carnitine Cystine Shikimate 3-phosphate Choline

Table 23: Top 25 metabolites with the largest weights for the PLS-DA model prediction for each sample
group in the kidney
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Plasma
24 Hr AKI 24 Hr Sham 4 Hr AKI 4 Hr Sham 7 Day AKI 7 Day Sham Normal
Creatinine Tryptophan Nicotinamide Cytidine Cytidine Cytidine Tryptophan
(5-L-Glutamyl)-peptide Glutamine Cytidine Nicotinamide 4-Aminobenzoate 4-Aminobenzoate Succinyl sulfathiazole
(S)(+)-Allantoin Succinyl sulfathiazole Triacanthine Tripeptide Pyridoxal Pyridoxal N-Methylethanolamine phosphate
Threonate Serine Tripeptide 4-Aminobenzoate Threonine N6-Methyl-L-lysine 2-Hydroxyglutarate/Citramalate
L-Adrenaline 5-Oxoproline 2-Methyleneglutarate Triacanthine N6-Methyl-L-lysine Threonine Peptide tryptophan
Hypoxanthine 2-Hydroxyglutarate/Citramalate N-Acetylornithine 2-Oxoglutarate 3-Sulfocatechol 3-Sulfocatechol Serine
Ascorbate D-Ribose 5-diphosphate 2-Hydroxyglutarate/Citramalate N-Acetylornithine Tripeptide Purine N6-Methyl-L-lysine
5-Guanidino-2-oxopentanoate Peptide tryptophan L-2-Aminoadipate 2-Methyleneglutarate 5-6-Dihydrothymine Tripeptide Glutamine
4-Pyridoxate Malate 2-Oxoglutarate N6-Methyl-L-lysine 2-Oxoglutarate (5-L-Glutamyl)-L-glutamine L-2-Aminoadipate
beta-D-Glucuronoside (5-L-Glutamyl)-L-glutamine Arginine Arginine L-Adrenaline 5-6-Dihydrothymine Malate
L-Carnitine N-Methylethanolamine phosphate D-Glucose 5-6-Dihydrothymine Dehydroascorbate L-Adrenaline Sedoheptulose 1-phosphate
N-Acyl-D-aspartate N6-Methyl-L-lysine 4-Aminobenzoate Pyridoxal Purine 2-Oxoglutarate D-Glucose
2-Deoxy-alpha-D-glucoside D-Glucose Tryptophan 2-Hydroxyglutarate/Citramalate (5-L-Glutamyl)-L-glutamine Glycine (5-L-Glutamyl)-L-glutamine
Histidine Guanine Asparagine beta-D-Glucuronoside Glycine Dehydroascorbate D-Ribose 5-diphosphate
O-Propanoylcarnitine Nicotinamide Aspartate Dehydroascorbate N-Acetylornithine L-Selenomethionine 5-Oxoproline
Xanthine Phenylalanine beta-D-Glucuronoside Thymine L-Citrulline N-Acetylornithine Nicotinamide
D-Ribose L-2-Aminoadipate 5-Guanidino-2-oxopentanoate L-2-Aminoadipate Nicotinamide 2-Oxoglutaramate Cytidine
Serine Methionine N6-Methyl-L-lysine 5-Guanidino-2-oxopentanoate 2-Oxoglutaramate L-Citrulline Phenylalanine
Homomethionine 2-Methyleneglutarate Glutathione disulfide L-Selenomethionine Arginine Urate Asparagine
Methylenediurea Sedoheptulose 1-phosphate L-Carnitine Aspartate L-Selenomethionine Pyruvate 2-Methyleneglutarate
Dethiobiotin N-Acetylornithine L-Selenomethionine L-Carnitine Pyruvate Cysteine Phosphoserine
Creatine L-Citrulline Glutamine D-Glucose Urate Cystine L-Selenomethionine
D-Rhamnose Oxaloacetate Xanthine Threonine Thymine Mannitol N-Acetylornithine
gamma-L-Glutamyl-D-alanine Asparagine 5-6-Dihydrothymine Glutathione disulfide N-Methylethanolamine phosphate D-Glyceraldehyde 3-phosphate/Glycerone phosphate L-Citrulline
Cytidine Cytidine Thymine L-Adrenaline S-Glutathionyl-L-cysteine 5-Guanidino-2-oxopentanoate Guanine

Table 24: Top 25 metabolites with the largest weights for the PLS-DA model prediction for each sample
group in the plasma
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